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Abstract

As markets have digitized, the number of tradable products has skyrocketed. Al-
gorithmically constructed portfolios of these assets now dominate public and private
markets, resulting in a combinatorial explosion of tradable assets. In this paper, we
provide a simple means to compute market clearing prices for semi-fungible assets
which have a partial ordering between them. Such assets are increasingly found in
traditional markets (bonds, commodities, ETFs), private markets (private credit, com-
pute markets), and in decentralized finance. We formulate the market clearing problem
as an optimization problem over a directed acyclic graph that represents participant
preferences. Subsequently, we use convex duality to efficiently estimate market clear-
ing prices, which correspond to particular dual variables. We then describe dominant
strategy incentive compatible payment and allocation rules for clearing these markets.
We conclude with examples of how this framework can construct prices for a variety
of algorithmically constructed, semi-fungible portfolios of practical importance.

1 Introduction

Many electronically traded assets are non-fungible. In contrast to a company’s common
stock, which is all—by construction—fungible, many other assets are similar but not exactly
identical. For a bond, we might be interested in its yield and credit rating. For a metal, we
may care about not only the price at which it is traded but also the purity level and delivery
location. For a liquid staking token, we might also care about the reputation of the staking
service providers. In all these examples, the items cannot be totally ordered—in contrast to
a company’s stock, which can be ordered by price in some order book. Instead, these items
are partially ordered: some are better than others, some are worse than others, and some
are incomparable. We call these types of assets semi-fungible. In this paper, we develop a
market clearing model for divisible, semi-fungible assets, such as those tokenized on public
blockchains.

Partial orders and embeddings. Partial orders are one natural interpolation between
complete fungibility and non-fungibility. In particular, fungible assets can generally be easily
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ordered based on their price; a buyer always prefers a lower price. For semi-fungible assets,
the asset price is only one of potentially many relevant dimensions. These assets naturally
have some partial orders where some assets may be preferred to other assets and be further
incomparable to others. As we will see, examples of semi-fungible assets range from bonds
and commodities to online ad placement and some cryptocurrencies.

1.1 Examples

We motivate our setting with several examples that also provide helpful mental models to
ground the mechanisms we subsequently develop.

Bonds. Bond traders historically considered each bond individually. More recently, sys-
temic credit funds and portfolio trading have increasingly taken over as electronic trading has
become more prevalent on these markets. The assets under management of these funds has
more than doubled in the last year [New24], and portfolio trading—where large baskets of
bonds are traded together—has similarly doubled since the beginning of 2024 [Whi24]. These
developments are a result of the semi-fungibility of bonds: bonds with the same yield and the
same credit rating are, for many purposes, equivalent. In the words of Matt Levine [Lev24]:

Historically, though, for a long time there was a view that each bond is a special
snowflake and you had to travel to the ends of the earth to get exactly the BBB+
bond that you were looking for. [...] The modern view is that bonds are largely
linear combinations of factor exposures so liquidity is just fine.

In other words, these assets have a number of properties that can be partially ordered.

Semi-fungible commodities. Many financial products in commodities markets—even
those traded on exchanges—possess a certain number of differentiating properties. For ex-
ample, a given lot of a particular metal, such as nickel, may have specific purity levels,
delivery locations, or some notion of seller reputation. Buyers may require a certain mini-
mum level or purity from this lot, or may only trust a subset of sellers in a given market.

Compute markets. For a given compute workload, many different types of compute
hardware may be available. For example, a machine learning model could be trained on
the latest GPU (likely the fastest), on an older GPU (likely at a lower throughput), or on
another type of hardware (e.g., a CPU or a TPU). Buyers may have different preferences for
the hardware they would like to use and the relative price-performance tradeoffs they are
willing to make, but ultimately all buyers are purchasing FLOPs for some time period.

Liquid (re)staking tokens. Issuers of yield-bearing assets, such as treasuries or bonds,
pay buyers some rate of interest over time. In return, the buyer accepts the risk that the
seller may default on their payments. As a result, buyers often have a preference on the
reputation of the issuers. In traditional markets, this reputation is typically assessed by
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rating agencies such as S&P or Moody’s. A similar thing has played out in blockchain
systems such as Ethereum and Solana. These systems have recently witnessed the rise of
so-called liquid staking tokens, issued by staking pools such as Lido and Jito, which promise
a yield on their staked assets. The recent rise of re-staking protocols (e.g., Eigenlayer and
Symbiotic) resulted in a proliferation of these yield-bearing assets. Each of these assets can
differ on many dimensions: the yield rate, the reputation (and therefore risk) of the (re)-
staking protocol, the perceived risk of default (via slashing), and the redemption mechanism,
among many other axes.

Collectibles. Finally, collectible markets, such as art markets, sneaker markets, or NFT
markets, exhibit similar partially-ordered properties. For example, a buyer may want a piece
by a particular artist, or a piece from a particular collection, but may not care about the
specifics of the piece beyond these properties. In NFT markets, this type of preference is
common, evidenced by the fact that a large proportion of the collection usually trades close
to the floor price—the lowest available price of any item in the collection.

1.2 Related work

We consider the market clearing problem with a partial ordering induced by divisible, semi-
fungible assets. Our work builds on ideas that have been previously developed in the litera-
ture. We note that, because we consider divisible goods, our work differs from the literature
on general combinatorial auctions.

Partially-ordered assets. Partially-ordered assets have been considered in the literature,
often in the context of indivisible goods. This type of structure describes relationships for
many types of assets: options on stocks can be (partially) ordered by their strike price and/or
maturity [AD03]; bonds can be ordered by their rating [JLT97]; other debt products can be
ordered by their seniority [LR08]; airline seats can be ordered by their class [BM93]; and
so on. Other work has considered partially ordered items in more generality, for example,
see [AR22]. Most of these works are not concerned with market clearing.

Batched exchanges. Our market mechanism works by batching together the preferences
of many buyers and clearing the market at regular intervals, akin to the frequent batched
auctions proposed by [BCS15]. We require the buyer preferences to be utility functions,
which may be defined over portfolios of assets. This structure is similar to the bidding
language developed by [Bud+23], which generalizes the orders from [KL17]. In contrast to
this work, our work assumes the existance of and uses a partial order of preferences over the
assets.

Market clearing. The broader literature on market clearing mechanisms is vast. Eisen-
berg and Gale proved that, for a market with divisible goods and buyers with linear utilities,
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the market equilibrium conditions are the optimality conditions of a particular convex pro-
gram [EG59]. The case with concave utilities maps to a convex optimization problem [Vég14].
Many results in the literature have been developed for markets fully fungible or non-fungible
goods using these models frameworks. (See [Vaz07; CV07] and citations therein.) A smaller
set of work has considered market clearing when participants have preferences over the items.
(See, for example, [CG11; GS99].) We focus on the specific case where there exists some
global partial ordering over the items in this market, and buyers can express their preferences
over the items in terms of this ordering.

1.3 This paper

In this paper, we introduce a market clearing model for divisible, semi-fungible assets by
leveraging partial order relationships among different properties. We introduce a framework
that captures partially ordered preferences across items in §2. Next, we define a convex
optimization formulation for market clearing in §3. In §4, we derive market clearing prices
and also propose a dominant strategy incentive compatible mechanism for clearing these
markets. We conclude with both toy and real-world examples in §5.

2 The asset

We consider a single asset (e.g., some particular metal, such as nickel) with some number of
properties. For example, in metals markets, these properties may include the metal purity
levels, delivery locations, or some notion of seller reputation. We denote the set of properties
(which is some abstract set) as P . We will refer to an item i as a (generally divisible) good
with property pi that can be purchased in some quantity.

Ordering over properties. We assume that these properties are partially ordered. That
is, given two items with some properties p, p′ ∈ P , respectively, we have one of three cases:
either p ≤ p′; or p ≥ p′; or, if neither of these are true, then p is incomparable to p′. The
first, p ≤ p′, may be read as or ‘p is no better than p′’, and similarly for the second, after
interchanging p and p′. In addition, if there is a third item with properties p′′ ∈ P which
satisfy p′′ ≥ p′ then, if p′ ≥ p, we should have p′′ ≥ p; i.e., the relation is transitive. Finally,
we assume that the set of orders has the property that, if p ≥ p′ and p ≤ p′, then p = p′;
i.e., the relation is antisymmetric.

Interpretations. The ordering over items has the following interpretation. If we have two
items i and i′ with properties pi and pi′ , respectively, then, if pi ≤ pi′ , we assume that, all
else being equal, anyone would accept the item with properties pi′ if they would accept the
items with properties pi. For example, given two metals, one with higher purity than the
other, a buyer attempting to purchase the lower purity metal would also happily accept the
higher purity metal at the same price, all else being equal. Similarly, a bond buyer would
happily accept a higher yield, all else being equal. The case with pi ≥ pi′ is similar, replacing
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the role of i with i′. Finally the case where pi is incomparable to pi′ means that some buyers
might prefer item i over i′ and some others might prefer i′ over i. For example, if some
metal originates from the United States versus the Philippines, some buyers might prefer
the former over the latter and vice versa. Similarly, if some bond has a duration of one year
and another has a duration of two years, some buyers might prefer the former over the latter
and vice versa.

Discussion. We will show that it is possible to construct markets that make use of this
additional partial-ordering structure in order to clear. These markets have a number of
important guarantees about how orders are executed. For example, in this market, if a
buyer expresses that she wants an item with properties at least as good as p′ ∈ P , then, if
no such item is available, she can be matched with any item i that has properties pi ≥ p′,
assuming such a item exists and is provided at no more than the price she is willing to pay.
(In economics parlance, we say that she has access to ‘more liquidity’ in this market than a
market that only trades items with properties pi.)

Partial orders as DAGs. Any partial order with a finite number of elements can be
viewed as a directed acyclic graph (often abbreviated to DAG) with P = |P| vertices, which
we will label with the elements of P . The edges are defined in the following way: the edge
from p ∈ P to p′ ∈ P is present if p ≤ p′ and there is no p′′ ∈ P such that p ≤ p′′ ≤ p′. In
other words, two nodes have an edge between them if there is no element that lies in between
them (with respect to the ordering of P). We will use this representation in what follows.
A simple example for yield-bearing assets is shown in figure 1.

A, 5%

A, 6%

B, 5%

A, 5% B, 7%

Operator A Operator B

Figure 1: An example partial ordering on five yield-bearing assets with different ratings and
yields, provided by different operators. We assume the operators are not comparable, whereas any
buyer prefers a higher rating and higher yield, all else being equal.

2.1 The embedding

Here, we discuss how to express buyer preferences for the items.
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{A} {B} {C}

{A,B} {A,C} {B,C}

{A,B,C}

Figure 2: Partial orders on the set of, say, node operators. Some users may be indifferent between
the operators A and B, while others may be indifferent between A and C, and so on.

Embedding the ordering. A buyer b can express her preferences for the asset by specify-
ing a property pb ∈ P which will, in some sense, be the base item she is willing to purchase.
In other words, given a list of n items i = 1, . . . , n with properties {pi}, she will take any
item i satisfying pi ≥ pb.

Preference vector. Let the vector zb ∈ Rn
+ denote the amount of each of the n items

allocated to buyer b. (Buyer b need not want all of these items.) We then write xb ∈ R+ for
the total amount of the asset (which includes any items with properties at least as good as
pb) that buyer b is willing to buy. Written out in math, this is

xb =
∑

i : pi≥pb

(zb)i.

The sum is taken over all items i such that with properties pi are at least as good as buyer
b’s desired property; i.e., the possible items’ properties satisfy pi ≥ pb. This can be written
much more succinctly as

xb = cTb z,

where we call the vector cb ∈ {0, 1}n the preference vector for buyer b, defined

cb =
∑

i : pi≥pb

ei.

(Here, ei it the ith unit basis vector.) More generally, we may wish to express weighted
preferences between the categories. For example, if a buyer has access to a zero-cost purifi-
cation process, she may be indifferent between one unit of an 100% pure metal and two units
of a 50% pure metal. We can express this preference using a vector c ∈ [0, 1]n, such that
the ‘total amount’ of the asset received is cT z. We leave these more general, non-Boolean
preference vectors as an extension.
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Preference vector ordering. Note that the preference vectors of buyers are themselves
also ordered in the following way: for any buyers b and b′, we have

pb ≤ pb′ if, and only if, cb ≥ cb′ ,

where the first inequality is with respect to the partial ordering over P and the second is an
elementwise inequality. Indeed, letting

supp(z) = {i | zi ̸= 0},

be the support of a vector z; i.e., the set of indices for which z is nonzero, then this is
equivalent to saying that

pb ≤ pb′ if, and only if, supp(cb) ⊇ supp(cb′), (1)

since cb and cb′ are Boolean. In other words, buyers willing to accept items with worse
properties have more permissive preference vectors. We make use of this relationship in
what follows.

3 The exchange

We now specify the market clearing problem for partially ordered assets, as described above.
We consider a single asset with B buyers, labeled b = 1, . . . , B and one supplier with a
quantity q ∈ Rn

+ of each item to sell. The ith entry of q, denoted qi, represents the total
quantity of item i (with property pi) that the supplier is willing to sell. Each buyer b receives
some amount xb ∈ R+ of the asset after the market clears.

Preferences. As discussed above, we use a vector cb ∈ Rn to represent the preferences of
a buyer over the items. If the buyer expresses that she wants items with properties p′ ∈ P ,
then, if no such item is available, she can be matched with any item i that has properties
pi ≥ p′. Thus, (cb)i = 1 for all i such that pi ≥ p′ and (cb)i = 0 otherwise.

Allocations. We define vectors zb ∈ Rn
+ such that the ith entry of zb, denoted (zb)i, is the

amount of the item with property pi that the supplier sells to buyer b. The total amount of
the asset received by buyer b (that this buyer is willing to take) can be written as

xb = cTb zb.

Finally, we include a constraint ensuring the supplier does not sell more than the available
items:

B∑
b=1

zb ≤ q.
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Utilities. We collect the amount of the asset received by each buyer into a vector x =
(x1, . . . , xB) ∈ RB

+. We express the utility of this allocation by a concave, nondecreasing
function U : RB

+ → R ∪ {−∞}, where infinite values encode constraints: an allocation x
such that U(x) = −∞ is unacceptable. We also require that U(0) = 0 and assume that U
is strictly increasing at 0, i.e., if U is differentiable at 0, that ∇U(0) > 0. We note that U
is typically separable over the buyers; each buyer individually specifies some utility function
on their individual allocation, denoted ub : R+ → R ∪ {−∞}. In this case, we can write U
as

U(x) =
B∑
b=1

ub(xb).

Market clearing. We write the market clearing problem as

maximize U(x)

subject to xb = cTb zb
B∑
b=1

zb ≤ q

zb ≥ 0, b = 1, . . . , B.

(2)

The variables are x ∈ RB and zb ∈ Rn for each buyer b = 1, . . . , B. The problem data
are the items supplied to the market g ∈ Rn

+, the preferences cb ∈ Rn
+, and the utility

function U , which is often a sum of buyer utilities ub. This problem is easily recognized as
a convex optimization problem with linear constraints. In fact, when the utility function
U is piecewise linear, this problem is simply a linear program. In both cases, the problem
can be solved efficiently in practice. Note that this problem can also be written as a special
case of a network flow problem in the framework of [DAE24] (cf., the Fisher market problem
introduced in [DAE24, §3.4]).

Discussion. This market model also extends to the common scenario where buyers may
wish to purchase multiple ‘baskets’ of items, each corresponding to different preferences and
utility functions. For example, a bond buyer may want to express preferences over higher-
rated and lower-rated bonds separately. In this case, we can simply introduce two ‘buyers’ b
and b′ corresponding to these different preferences in our model. Since the utility function is
concave, this model allows for preferences with complements. (This is the case, for example,
if we value two units of items which have properties at least as good as both A and B more
than we value one unit of items with properties at least as good as A and one unit of items
at least as good as B, but not necessarily both.) Our model and the associated analysis can
also be easily extended to the scenario in which we have more than one seller, each with
some allocation of items, and to the scenario with more than one asset.
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4 Market-clearing mechanism

Now that we have defined the market clearing problem (2), which is a convex optimization
problem, we derive and examine the dual problem to determine how we should clear this
market.

4.1 Market-clearing prices

We can write the Lagrangian of the market clearing problem as

L(x, z, ν, λ) = U(x) +
B∑
b=1

νb(c
T
b zb − xb) + λT

(
q −

B∑
b=1

zb

)
−

B∑
b=1

I(zb),

where the dual variables are ν ∈ RB and λ ∈ Rn
+, while I : Rn → R∪{+∞} is the indicator

function for the nonnegative reals, defined as

I(w) =

{
0 w ≥ 0

∞ otherwise.

Maximizing over the primal variables x and {zb}, we obtain the dual function

g(ν, λ) = λT q + sup
x

(
U(x)− νTx

)
+

B∑
b=1

sup
zb≥0

(
(νbcb − λ)T zb

)
The dual problem is then

minimize g(ν, λ)

subject to λ ≥ 0,
(3)

with variables λ ∈ Rn and ν ∈ RB. Note that this problem is also convex, as g is the
pointwise supremum of a family of affine functions.

Duality. Denote the optimal value of the primal problem (2) by p∗ and the optimal value
of the dual problem (3) by d∗. Since all constraints are linear and the problem has nonempty
feasible set, we have strong duality [Ber09, Prop. 5.3.1]:

p∗ = d∗,

and there exists some dual variables λ∗ and ν∗ which achieve this bound.

Implicit constraints. Problem (3) has some additional implicit constraints. Observe that,
if there exists some index i and buyer b such that (νbcb − λ)i > 0, then

sup
zb≥0

(
(νbcb − λ)T zb

)
≥ (νbcb − λ)T (tei) = t(νbcb − λ)i → ∞,
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as t ↑ ∞. Here, we have chosen zb = tei, where ei is the ith unit basis vector. This implies
that the supremum is infinite if any element of νbcb − λ is positive, so we must have

νbcb − λ ≤ 0

as an implicit constraint for each b = 1, . . . , B. By a similar argument, we can show that if
U is nondecreasing and U(0) < ∞, then we have the implicit constraint that

ν ≥ 0.

Adding both implicit constraints as explicit constraints gives the following constrained op-
timization problem:

minimize sup
x

(
U(x)− νTx

)
+ λT q

subject to νbcb ≤ λ, b = 1, . . . , B

λ ≥ 0, ν ≥ 0.

(4)

Simplification. Note that the first constraint tells us that λ dominates νbcb for each buyer
b = 1, . . . , B. Using this, and the fact that q ≥ 0, we can further simplify the dual problem:

minimize sup
x

(
U(x)− νTx

)
+

n∑
i=1

qi max
b

((νbcb)i)

subject to ν ≥ 0.

(5)

After this simplification, the dual problem only has a positivity constraint on the dual
variables and is relatively easy to solve with standard methods. This form also suggests that
a tatonnement-style algorithm could be used to solve this problem, although we believe that
solving the original problem (2) makes more sense in practice.

Dual variables. Both dual variables ν and λ have natural interpretations. To simplify the
exposition, we will let U be differentiable in what follows, but note that this is not necessary
and a suitable generalization exists via subgradients. From the supremum in the objective
of (4) and (5), we have that the optimal dual variable ν⋆ and optimal allocation x⋆ will
satisfy

∇U(x⋆) = ν⋆.

Thus, the dual variable ν⋆ gives the marginal utilities for each buyer at the optimal alloca-
tions. Viewing these dual variables as prices, we interpret the objective in (5) as maximizing
the net utility (utility minus cost) of the buyers, plus the seller’s revenue from each item.
(Recall that (cb)i = 1 if buyer b would accept item i with properties pi and 0 otherwise.)
While we may view an optimal dual variable ν⋆ as the marginal prices for each buyer, we
may view an optimal dual variable λ⋆ as the marginal price for each item. In particular, we
know that at optimality, for the same reason we may rewrite (4) as (5), we have

λ⋆
i = max

b
((νbcb)i), (6)
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for each i = 1, . . . , n. (This is an optimal point if q ≥ 0, but not necessarily uniquely so.)
Since the buyers themselves are partially sorted by preferences (from (1)), this observation
says that that, over all buyers b willing to buy item i, λ⋆

i is the maximum marginal price that
any of these buyers is willing to pay for this item. In turn, this implies that the marginal
price for each item i respects the partial ordering of properties in the sense that

λ⋆
i ≥ λ⋆

i′ if pi ≥ pi′ .

In English: if any item i has properties at least as good as another item i′, then the marginal
price of i is at least as large as that of i′. (This makes sense; any buyer of item i′ would always
prefer to buy item i for any price below that of i′, since item i is at least as good.) Note
that this relationship does not say anything about the price of items that are incomparable.

Implementation and payments. We can implement this mechanism by asking users
to specify their preferences U and then solving the allocation problem (2) for the optimal
allocation x⋆ and dual variable ν⋆. We can charge each user i their marginal utility ν⋆

i

for their allocation. In this case, this mechanism is essentially a first-price auction over an
infinite set of goods. As in a standard first-price auction, we would expect users to shade
their preferences in order to maximize their net utility (utility minus cost). In the following
section, we take advantage of the convex nature of this market clearing problem to construct
and incentive compatible payment rule.

4.2 A DSIC mechanism

While duality provides market-clearing prices ν for each buyer, these prices are not necessar-
ily incentive-compatible. Thus, the question remains: if we clear the market by solving (2),
what do we charge each buyer for their allocation? We answer this question by viewing
the market clearing problem as a system welfare computation. This viewpoint leads to an
‘auction’ allocation rule and the associated dominant strategy incentive compatible (DSIC)
payment rule.

Max-of-sum welfare. In this construction, we will have some compact (under whatever
topology) space of allocations S and some locally-convex topological vector spaces F1, . . . ,FB

of upper semicontinuous functions (with respect to the topology of S) mapping S → R,
potentially with some additional restrictions such as concavity or monotonicity. We will
define the following family, indexed by the set S and functional spaces F = F1 × · · · × FB,
of welfare functions F : F → R of the form:

F (f) = sup
x∈S

(
B∑
b=1

fb(x)

)
, (7)

where f ∈ F . We call these types of functions F max-of-sum due to their form. In this
case, we can interpret the function fb ∈ Fb as the bid for buyer b (who gets to construct
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any function they wish, as in (2)) and S as the set of possible allocations (the constraints
of (2). If all buyers truthfully report their bid, this F would correspond exactly to the
welfare gained by buyers and any solution x⋆ ∈ S (which exists by compactness of S and
upper-semicontinuity of the {fi}) to the problem is a welfare-maximizing allocation. It is
not, of course, a-priori obvious that this will be the case, or how much the mechanism should
charge users in order to ensure truthful bidding. We deal with these issues next.

Allocation rules. We define an allocation rule as a probability measure µ over (a sigma
algebra of subsets of) the set S, for any fixed vector of bids f . (In our particular case,
we will have S ⊆ Rn, which means that the usual sigma-algebra over Rn works, but this
construction holds more generally.) Any allocation is a sample drawn from the distribution
µ. In our particular case, the allocation rule will be very simple: set µ({x⋆}) = 1, where x⋆

is any solution to the right hand side of (7). In other words, we set the allocation to always
be a point mass on any solution of the right hand side of (7). Note that any probability
distribution with support over the optimal points would also work. These rules might be of
interest to ensure certain types of ‘fairness’ when the solution is not unique.

Myerson’s lemma. Myerson’s lemma [Mye81] gives us a way of constructing DSIC pay-
ment rules for allocation rules that are monotone in the finite-dimensional setting (i.e., when
F is itself a finite dimensional vector space over R). Unfortunately, it is not clear what the
correct generalization is when the space of possible bids F need not be finite-dimensional,
as is true in the partially ordered market construction of §3. We will explicitly construct a
payment rule and then show that it is DSIC under quasilinear utilities, although the result
holds in more general settings.

Payment rule. The payment Pb(f) that buyer b must make for a given set of bids f ∈ F
and allocation rule (distribution) µ, is

Pb(f) = F (f−b)−
∑
b′ ̸=b

∫
S

fb′ dµ,

where f−b = (f1, . . . , fb−1, 0, fb+1, . . . , fB) ∈ F . In the case that we choose the allocation
rule µ to always be a point mass at the optimal point x⋆ which maximizes (7) over the bids
f , this simplifies to

Pb(f) = F (f−b)−
∑
b′ ̸=b

fb′(x
⋆). (8)

Note that this payment rule can be evaluated by solving the market clearing problem (2)
B+1 times: once to compute an optimal allocation x⋆, and B times to compute the allocation
without each of the B buyers.

Interpretation. The interpretation of this rule is particularly simple: we charge buyer
b the marginal utility lost by all other buyers for having included buyer b’s bid. In other
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words, buyer b must pay their externality. This payment rule uses essentially the same
idea as the Vickrey auction, except in this more general case. We can recover the Vickrey
auction payment and allocation rules directly from this construction as the special case where
S = {eb | b = 1, . . . , B} where eb is the bth unit basis vector and the functions fb are linear
and depend only on the bth component; i.e., when fb : S → R and the family of possible
functions are those for which

Fb = {fb | fb(x) = αbxb for some αb ∈ R+},

for each b = 1, . . . , B. For the Vickrey auction with a single item, the set S simply says
that the item must be allocated to one buyer and problem (7) says that the welfare is the
allocation which takes the maximum over all bids. The payment rule (8) then says that the
winning buyer (ties broken based on the definition of µ) pays the second-highest bid and
the rest pay nothing. We leave extensions of this model to handle reserve prices, indivisible
goods, and other variants considered in the literature to future work. We also note that the
usual issues with sybils in VCG mechanisms also apply here (false-name bids) [YSM04]. We
leave exploration of false-name-proof mechanisms to future work.

Proof of DSIC. The proof that this mechanism is dominant strategy incentive compatible
is mostly notation-chasing. Let f̄b : Fb → R be any bid for buyer b and let fb : Fb → R be
the true valuation; i.e., for any allocation µ, the (expected) value to player b of this allocation
is
∫
S
fb dµ. Then, by definition, f−b does not contain player b’s bid (given by f̄b). We will

show that the payoff for player b having bid fb is always at least as large as the payoff for
her having bid any other f̄b. In particular, consider the difference in payoffs:(∫

S

fb dµ−

(
F (f−b)−

∑
b′ ̸=b

∫
µ

fb′ dµ

))
︸ ︷︷ ︸

payoff for bidding fb

−

(∫
S

fb dµ̄−

(
F (f−b)−

∑
b′ ̸=b

∫
µ

fb′ dµ̄

))
︸ ︷︷ ︸

payoff for bidding f̄b

.

Here µ denotes any allocation rule consistent with our definition (that is, any probability
distribution over maximizers of the right hand side of (7)) for the bids (f1, . . . , fB) and µ̄ is
the same but for the bids (f1, . . . , fb−1, f̄b, fb+1, . . . fB). Rearranging gives that this expression
is equal to

B∑
b=1

∫
S

fb dµ−
B∑
b=1

∫
S

fb dµ̄ = F (f)−
∫
S

(
B∑
b=1

fb

)
dµ̄ ≥ 0.

Where the inequality follows from the fact that any expectation is never larger than the
supremum, along with the definition of F .

5 Examples

We conclude this paper with a few examples. First, we show a simple numerical example
to demonstrate the payment and allocation rules, and how prices change under different
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preferences. Next, we show how to model decentralized lending protocols, which offer a
variety of different yield products, in our framework. Finally, we model restaking networks,
in which the utility for any buyer depends not only on their allocation but also on the actions
of all other buyers. We show that this situation fits into our market clearing mechanism §3
and conjecture that the DSIC payment rule developed in §4 extends as well.

5.1 Simple example

Consider a market with B = 2 buyers and n = 3 yield bearing assets with different ratings
and yields, depicted in figure 3. There is one (divisible) unit of each item. We consider a few

B, 5%

A, 6% B, 7%

Figure 3: Three yield bearing assets with various ratings, and their associated partial ordering.

different scenarios and look at the market clearing prices (dual variables) and the payment
rules in each case.

Homogenous market. First, consider the case where each buyer would accept any item.
Buyers express utilities in units of yield. The resulting (identical) preference vectors are

c1 = c2 = (6, 5, 7)

where assets are indexed via a post-order traversal of the graph in figure 3. We assume that
both buyers have a square root utility function

ub(xb) =
√
xb.

Solving the market clearing problem (2) results in symmetric allocation and payments:

x⋆
1 = x⋆

2 = 9, and z⋆1 = z⋆2 =

0.50.5
0.5

 .

The dual variables are ν⋆
1 = ν⋆

2 = 1/6, and we can easily verify that (6) holds:

ν⋆
1 · c1 = ν⋆

2 · c2 =
1

6
·

65
7

 = λ⋆ =

 1
5/6
7/6

 .

Each buyer pays 1.24 resulting in a net utility of 1.76.
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Rating preferences. Next, we consider the case where buyer 1 only wants an A-rated
asset, but buyer 2 is indifferent. The following vectors encode these preferences:

c1 = (6, 0, 0)

c2 = (6, 5, 7)

Both buyers again have a square root utility function. Solving the market clearing prob-
lem (2) results in the allocation

x⋆
1 = 6, z⋆1 =

10
0

 and x⋆
2 = 12, z⋆1 =

01
1

 .

The dual variables are ν⋆
1 = 0.204. ν⋆

2 = 0.144, and we can easily verify that (6) holds:

ν⋆
1 · c1 =

1.2240
0

 ≤ λ⋆ =

1.2250.722
1.01

 and ν⋆
2 · c2 =

0.8640.72
1.01

 ≤ λ⋆ =

1.2250.722
1.01

 ,

with each elementwise inequality saturated for at least one buyer. In this case, buyer 1 pays
0.78 but buyer 2 pays nothing. This payment makes sense; buyer 2 was only allocated items
that buyer 1 would not accept. The resulting net utilities are 1.67 and 3.47 respectively.

Different utilities. Finally, we consider the case where the buyers have different utility
functions but both are willing to accept either A- or B-rated assets. Here, we use the utility
functions

u1(x1) = log(x1 + 1) and u2(x2) =
√
x2.

Solving the market clearing problem (2) results in the allocation

x⋆
1 = 5.94, z⋆1 =

0.340.35
0.31

 and x⋆
2 = 12.06, z⋆1 =

0.660.65
0.67

 .

The dual variables are ν⋆
1 = 0.144. ν⋆

2 = 0.144, and we can easily verify that (6) holds:

ν⋆
1 · c1 =

0.8640.72
1.01

 ≤ λ⋆ =

0.8640.72
1.008

 and ν⋆
2 · c2 =

0.8640.72
1.01

 ≤ λ⋆ =

0.8640.72
1.008

 ,

This result makes sense; the buyers have different utility functions, but the market clearing
mechanism chose an allocation such that their marginal utilities match. In this case, buyer
1 pays 0.77 and buyer 2 pays 1.01. The resulting net utilities are 5.17 and 2.47 respectively.
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5.2 Decentralized lending protocols

On-chain lending markets match suppliers, who want to earn yield on their existing holdings,
to users who want to borrow against their existing portfolio. These protocols are overcol-
lateralized: borrowers have to deposit collateral greater than the initial value of their loan
to open a position. Such loans, which are similar to securities-based lending and Lombard
loans, allow a user who holds a large quantity of a risky asset (such as Ethereum) to bor-
row numéraire assets (such as the dollar-pegged USDC) to invest elsewhere. These markets
have grown to over $35 billion in supplied assets and have had at least $2 billion in daily
outstanding loans since 2021 [Sta25a].

Classic DeFi lending protocols. The first on-chain lending protocols within decentral-
ized finance (DeFi) include Compound [Kao+20] and Aave [Fu+21; SSS22]. These protocols
pool together suppliers’ assets and algorithmically set borrow interest rates. Losses from
borrowers who default are shared amongst the pool, reducing the variance in returns for
suppliers. However, these protocols have a fixed interest rate model and cannot dynami-
cally adjust to changing market conditions or different borrower profiles. As a result, these
protocols must be conservative in choosing loan parameters to mitigate default risk.

Curatorial lending protocols. Newer lending protocols, such as Morpho [Fra23] and
Euler [Tea24b], introduce a third-party known as a curator. In these markets, curators accu-
mulate assets from suppliers into ‘vaults’ which each target a particular borrower profile and,
as a result, don’t need such conservative risk parameters. Competition amongst curators re-
sults in dynamic price discrimination on the rates charged to the different markets [Ber+24].
These curatorial markets have grown to over $6 billion in assets in 2025 [Sta25c].

Market clearing model. Consider a curatorial market with V vaults (items) and B
borrowers (buyers). Loans from each vault v = 1, . . . , V can only be used for particular,
specified actions. Each borrower b = 1, . . . , B, set (cb)v = 1 if they can use vault v for their
desired actions and (cb)v = 0 otherwise. If a vault v has supply sv > 0 current demand
dv ≥ 0, then for a loan of size x the vault charges an interest rate

κv ·
dv + x

sv
,

where κv > 0 is a constant. Borrower b earns revenue rb(xb), which is a concave, nonde-
creasing function of the loan size xb. Thus, after loans are allocated, this buyer has net
utility

ub(xb) = rb(xb)− κv ·
dv + xb

sv
· xb.

The market clearing problem aims to allocate the supply to borrowers that minimizes their
borrowing cost while honoring vault constraints.
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Discussion. We could clear the other side of this market—allocation from asset suppliers
to curated vaults—with our market clearing mechanism as well. Each asset supplier attempts
to maximize their revenue while minimizing risk from bad loans, expressed via preferences
over the vaults to which they would supply assets. Since the mechanism only requires
specification of utility functions and the preference vector, a protocol could also dynamically
rebalance vaults on behalf of the suppliers. Also note that, in practice, the interest rate
typically depends on not only an individual borrower’s loan but also the loans allocated
to all other borrowers at the same time. Modeling this results in a non-separable utility
function, similar to that of our next example.

5.3 Restaking networks

Restaking markets in proof-of-stake cryptocurrency networks exhibit similar behavior. These
markets allows asset holders to lend out their assets for additional yield.

Staking. Proof-of-stake cryptocurrency networks provide economic incentives for users,
called stakers, to validate the state of the network. Specifically, these users earn rewards
for checking the validity of blocks submitted to the network. To earn these rewards, stakers
must lock up assets as collateral. If a staker incorrectly performs their validation duties, they
are financially penalized (‘slashed’, in industry parlance). See [Sal21] for additional details.

Restaking. Restaking allows for a staker to earn rewards for validating multiple networks
(‘services’, in industry parlance) [Tea24a] using the same assets. In other words, a single
staker pledges their assets as collateral to multiple services. These stakers now have many
different validation duties—some from each service they validate—and, as a result, may be
penalized by any of these services, raising the risk of default and of liquidation cascades.
Durvasula and Roughgarden [DR24] first formalized the excess default risk, and follow-up
work by Chitra and Pai [CP24] analyzed the impact of how incentives paid affected this
default risk. The restaking service Eigenlayer on the Ethereum blockchain has over $15
billion of assets [Sta25b].

Market clearing model. We view each service’s reward (yield) as an item and each staker
as a buyer. Each buyer aims to maximize expected revenue within their risk parameters.
They will evaluate services based on a number of properties such as historical economic
performance, penalty (slashing) rates, service uptime, current yield, and service credit risk.
In practice, these properties may be collapsed into only rating and yield, as in §5.1. We
note that restaking allows for a single staker to delegate their stake to multiple services. We
adapt the incentivized restaking model of [CP24]. Each service s = 1, . . . , S costs cs and
pays rewards rs, split pro-rata amongst all its validators. We consider SB items, one for
each service-validator combination. The preferences can be encoded as

(cb)s =

{
1 staker b accepts service s

0 otherwise,
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where cb only ‘hits’ the relevant items for validator b. The (nonseparable, concave) utility is
then

U(x) =
S∑

s=1

(
rs ·

xb,s∑B
b=1 xb,s

− cs ·
∑B

b=1 xb,s

)
.

We can similarly clear this market by solving (2). Note that, while the objective is not
separable, we conjecture that can use the same ideas outlined in §4.2: charging buyer b her
externality results in a DSIC payment rule. We leave full characterization to future work.

6 Conclusion

In this paper, we constructed markets over semi-fungible (or partially-ordered) assets. Such
markets take into account this partial ordering in order to provide additional liquidity for
buyers and sellers: any buyer who wishes to buy an item is, if they receive an item, guaranteed
an item at least as good as the requested one. Thus, any seller has ‘more chances’ to sell their
items. We then showed that clearing these markets is a convex optimization problem that
can be efficiently solved on modern hardware. The dual problem admits a nice interpretation
in terms of the market clearing prices, and we showed that these prices respect the partial
order; i.e., items that are ‘better’ with respect to this order have a price no lower than
those which are ‘worse’. Finally, we constructed a dominant strategy incentive compatible
mechanism such that buyers are incentivized to bid their true valuations, which is efficient to
implement in practice. We believe that our mechanism opens many avenues for interesting
future work.
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