
WTF is EIP-1559 actually doing?

Theo Diamandis
work with Guillermo Angeris, Tarun Chitra, Alex Evans, and Ciamac Moallemi

Columbia Cryptoeconomics Conference 2024



EIP-1559 solves a specific online optimization
problem

with a particular algorithm that is low
regret.

1



EIP-1559 solves a specific online optimization
problem with a particular algorithm

that is low
regret.

1



EIP-1559 solves a specific online optimization
problem with a particular algorithm that is low

regret.

1



Outline

The optimization problem
Single block
Multiple blocks (online)

The algorithm

The regret (i.e., why the algorithm works well)

Conclusion



Pricing algorithms solve the dual of a particular resource
allocation problem (how to pack ‘optimal’ blocks).

The optimization problem 2



Outline

The optimization problem
Single block
Multiple blocks (online)

The algorithm

The regret (i.e., why the algorithm works well)

Conclusion



Formalizing block building

▶ Mempool with n possible txns
– Txn j consumes gas aj ∈ R+, has utility qj ∈ R+

– Vector x ∈ {0, 1}n encodes which txns are included in the block

– Set of allowable txns is S ⊆ {0, 1}n (gas limit, MEV constraints, etc)

▶ Gas usage of the block is y = aT x .

▶ Network’s unhappiness with this usage given by loss function ℓ(y), for example:

ℓ(y) =

{
0 y = target
∞ otherwise

The optimization problem 3



Formalizing block building

▶ Mempool with n possible txns
– Txn j consumes gas aj ∈ R+, has utility qj ∈ R+

– Vector x ∈ {0, 1}n encodes which txns are included in the block

– Set of allowable txns is S ⊆ {0, 1}n (gas limit, MEV constraints, etc)

▶ Gas usage of the block is y = aT x .

▶ Network’s unhappiness with this usage given by loss function ℓ(y), for example:

ℓ(y) =

{
0 y = target
∞ otherwise

The optimization problem 3



The resource allocation problem

maximize qT x − ℓ(y)

subject to y = aT x

x ∈ S .

The optimization problem 4



The resource allocation problem

maximize qT x − ℓ(y)

subject to y = aT x

x ∈ S .

▶ Objective: Maximize utility of included txns minus loss incurred by the network

The optimization problem 4



The resource allocation problem

maximize qT x − ℓ(y)

subject to y = aT x

x ∈ S .

▶ Objective: Maximize utility of included txns minus loss incurred by the network

▶ Constraints: Utilization y is resource usage of included txns, and x is in the set of
allowable txns S ⊆ {0, 1}n

The optimization problem 4



The resource allocation problem

maximize qT x − ℓ(y)

subject to y = aT x

x ∈ S .

▶ But network designer cannot solve this in practice!
– Doesn’t decide which txns are in a block (block builders do this)

– Doesn’t know utilities q

▶ Goal: set prices so that this problem is solved optimally on average

The optimization problem 5



The resource allocation problem

maximize qT x − ℓ(y)

subject to y = aT x

x ∈ S .

▶ But network designer cannot solve this in practice!
– Doesn’t decide which txns are in a block (block builders do this)

– Doesn’t know utilities q

▶ Goal: set prices so that this problem is solved optimally on average

The optimization problem 5



Duality theory: relaxing constraints to penalties

maximize qT x − ℓ(y)

subject to y = aT x

x ∈ S .

▶ Network designer cares about utilization y , based on txns x

▶ Block builders only care about which txns they can include

The optimization problem 6



Duality theory: relaxing constraints to penalties

maximize qT x − ℓ(y)

subject to y = aT x

x ∈ S

▶ Network designer cares about utilization y , based on txns x

▶ Block builders only care about which txns they can include

▶ We will ‘decouple’ utilization of network and that of tx producers

▶ Correctly set penalty → dual problem = original problem & utilizations are equal

The optimization problem 7



Duality theory: relaxing constraints to penalties

maximize qT x − ℓ(y)

subject to y = aT x

x ∈ S

▶ Network designer cares about utilization y , based on txns x

▶ Block builders only care about which txns they can include

▶ We will ‘decouple’ utilization of network and that of tx producers

▶ Correctly set penalty → dual problem = original problem & utilizations are equal

The optimization problem 7



Dual decouples tx producers and network

▶ Dual problem is to find the prices p ∈ R+ that minimize dual function f (p)

▶ From before, p are the prices for violating prev. constraint y = aT x

– Relaxing constraint to penalty → pay per unit violation

▶ Dual problem is to minimize dual function f (p),

minimize f (p) = ℓ∗(p))︸ ︷︷ ︸
network

+ sup
x∈S

(q − p · a)T x︸ ︷︷ ︸
tx producers

,

where ℓ∗ is the conjugate function of ℓ (typically closed form)

The optimization problem 8



Dual decouples tx producers and network

▶ Dual problem is to find the prices p ∈ R+ that minimize dual function f (p)

▶ From before, p are the prices for violating prev. constraint y = aT x

– Relaxing constraint to penalty → pay per unit violation

▶ Dual problem is to minimize dual function f (p),

minimize f (p) = ℓ∗(p))︸ ︷︷ ︸
network

+ sup
x∈S

(q − p · a)T x︸ ︷︷ ︸
tx producers

,

where ℓ∗ is the conjugate function of ℓ (typically closed form)

The optimization problem 8



Dual decouples tx producers and network

▶ Dual problem is to find the prices p ∈ R+ that minimize dual function f (p)

▶ From before, p are the prices for violating prev. constraint y = aT x

– Relaxing constraint to penalty → pay per unit violation

▶ Dual problem is to minimize dual function f (p),

minimize f (p) = ℓ∗(p))︸ ︷︷ ︸
network

+ sup
x∈S

(q − p · a)T x︸ ︷︷ ︸
tx producers

,

where ℓ∗ is the conjugate function of ℓ (typically closed form)

The optimization problem 8



Second term: block building problem

▶ Maximize net utility (utility minus cost) subject to tx constraints

maximize (q − p · a)T x
subject to x ∈ S .

▶ Exact problem solved by block producers! → Network can observe x⋆

▶ Thus, we can compute the gradient of f :

∇f (p) = y⋆(p)− aT x⋆(p)

The optimization problem 9



Outline

The optimization problem
Single block
Multiple blocks (online)

The algorithm

The regret (i.e., why the algorithm works well)

Conclusion



Online problem

▶ But the transactions are not static! At each block:

1. Network chooses prices pt

2. Users submit txns (with utilities qt , gas usage at), possibly adversarially

3. Network receives payoff ft(pt) (from duality)

▶ New goal: dynamically choose prices pt to minimize the average loss,

minimize
1
T

T∑
t=1

ft(pt).

The optimization problem 10



Online problem

▶ But the transactions are not static! At each block:
1. Network chooses prices pt

2. Users submit txns (with utilities qt , gas usage at), possibly adversarially

3. Network receives payoff ft(pt) (from duality)

▶ New goal: dynamically choose prices pt to minimize the average loss,

minimize
1
T

T∑
t=1

ft(pt).

The optimization problem 10



Online problem

▶ But the transactions are not static! At each block:
1. Network chooses prices pt

2. Users submit txns (with utilities qt , gas usage at), possibly adversarially

3. Network receives payoff ft(pt) (from duality)

▶ New goal: dynamically choose prices pt to minimize the average loss,

minimize
1
T

T∑
t=1

ft(pt).

The optimization problem 10



Online problem

▶ But the transactions are not static! At each block:
1. Network chooses prices pt

2. Users submit txns (with utilities qt , gas usage at), possibly adversarially

3. Network receives payoff ft(pt) (from duality)

▶ New goal: dynamically choose prices pt to minimize the average loss,

minimize
1
T

T∑
t=1

ft(pt).

The optimization problem 10



Online problem

▶ But the transactions are not static! At each block:
1. Network chooses prices pt

2. Users submit txns (with utilities qt , gas usage at), possibly adversarially

3. Network receives payoff ft(pt) (from duality)

▶ New goal: dynamically choose prices pt to minimize the average loss,

minimize
1
T

T∑
t=1

ft(pt).

The optimization problem 10



Outline

The optimization problem
Single block
Multiple blocks (online)

The algorithm

The regret (i.e., why the algorithm works well)

Conclusion



Natural idea: mirror descent

▶ Next price pt+1 minimizes linear approx. of ft(p) plus a regularizer D(p, pt):

pt+1 = argmin
p

f̂t(p) +
1
2η

D(p, pt)

where f̂t(p) = ft(pt) +∇ft(pt)
T (p − pt)

▶ D(p, pt) is a strongly convex function that keeps pt+1 close to pt

▶ Example: recover vanilla gradient descent by setting D(p, pt) = ∥(p − pt)∥2
2

The algorithm 11



Natural idea: mirror descent

▶ Next price pt+1 minimizes linear approx. of ft(p) plus a regularizer D(p, pt):

pt+1 = argmin
p

f̂t(p) +
1
2η

D(p, pt)

where f̂t(p) = ft(pt) +∇ft(pt)
T (p − pt)

▶ D(p, pt) is a strongly convex function that keeps pt+1 close to pt

▶ Example: recover vanilla gradient descent by setting D(p, pt) = ∥(p − pt)∥2
2

The algorithm 11



Natural idea: mirror descent

▶ Next price pt+1 minimizes linear approx. of ft(p) plus a regularizer D(p, pt):

pt+1 = argmin
p

f̂t(p) +
1
2η

D(p, pt)

where f̂t(p) = ft(pt) +∇ft(pt)
T (p − pt)

▶ D(p, pt) is a strongly convex function that keeps pt+1 close to pt

▶ Example: recover vanilla gradient descent by setting D(p, pt) = ∥(p − pt)∥2
2

The algorithm 11



Back to EIP-1559

▶ Choose the loss function and regularizer:

ℓ(y) =

{
0 y = 15M
∞ otherwise D(p, pt) = p · log(p/pt)− p

▶ Recover the EIP-1559 & EIP-4844 update rule:

pt+1 = pt · exp
(
η(aT x︸︷︷︸

usage

− 15M︸︷︷︸
target

)
)

▶ Lots of questions...

The algorithm 12



Back to EIP-1559

▶ Choose the loss function and regularizer:

ℓ(y) =

{
0 y = 15M
∞ otherwise D(p, pt) = p · log(p/pt)− p

▶ Recover the EIP-1559 & EIP-4844 update rule:

pt+1 = pt · exp
(
η(aT x︸︷︷︸

usage

− 15M︸︷︷︸
target

)
)

▶ Lots of questions...

The algorithm 12



What’s this regularizer doing?

pt ept
p

p log(p/pt)− p

▶ ‘Bregman divergence’ associated with the negative entropy function

▶ Asymmetric; penalizes decreases more than increases
– May explain positive overshoot of EIP-1559 (Leonardos et al. 2023)

The algorithm 13



More questions

▶ Is this the right regularizer?

▶ Is this loss function a good one?

▶ Is mirror descent a good update rule?

▶ With what benchmark do we measure ‘good’?

▶ What should η be?

The algorithm 14



More questions

▶ Is this the right regularizer?

▶ Is this loss function a good one?

▶ Is mirror descent a good update rule?

▶ With what benchmark do we measure ‘good’?

▶ What should η be?

The algorithm 14



More questions

▶ Is this the right regularizer?

▶ Is this loss function a good one?

▶ Is mirror descent a good update rule?

▶ With what benchmark do we measure ‘good’?

▶ What should η be?

The algorithm 14



More questions

▶ Is this the right regularizer?

▶ Is this loss function a good one?

▶ Is mirror descent a good update rule?

▶ With what benchmark do we measure ‘good’?

▶ What should η be?

The algorithm 14



More questions

▶ Is this the right regularizer?

▶ Is this loss function a good one?

▶ Is mirror descent a good update rule?

▶ With what benchmark do we measure ‘good’?

▶ What should η be?

The algorithm 14



Outline

The optimization problem
Single block
Multiple blocks (online)

The algorithm

The regret (i.e., why the algorithm works well)

Conclusion



Benchmark: regret

▶ Metric: regret of the network:

regret(T ) =
1
T

(
T∑
t=1

ft(pt)−min
p⋆

T∑
t=1

ft(p
⋆)

)

▶ Interpretation: difference between our update rule and the best fixed prices p⋆

– Knowing p⋆ requires omniscience: assumes you know all future txns!

– Analogy: online vs. offline learning

The regret (i.e., why the algorithm works well) 15



Choose the right step size, get low regret

▶ Choose the step size η > 0 such that

η ≤ 1
target

· 1√
2T

·
√
log(pmax)− 1

▶ Then we have
regret(T ) ≤ C√

T

▶ This regret goes to zero as T gets large!

The regret (i.e., why the algorithm works well) 16



Does EIP-1559 have the right step size?

▶ Recall that EIP-1559 is (approximately) given by

pt+1 = pt · exp
(

1
8

(
usage − target

target

))
= pt · exp

(
1

8 · 15M

(
aT x − 15M

))

▶ We get O(1/
√
T ) regret with

η =
1

target
· 1√

2T

▶ Implies EIP-1559’s choice of T is only 32 blocks!
– Regret decays slowly with T ; this T is likely too small... (and η is too large)

The regret (i.e., why the algorithm works well) 17



Does EIP-1559 have the right step size?

▶ Recall that EIP-1559 is (approximately) given by

pt+1 = pt · exp
(

1
8

(
usage − target

target

))
= pt · exp

(
1

8 · 15M

(
aT x − 15M

))
▶ We get O(1/

√
T ) regret with

η =
1

target
· 1√

2T

▶ Implies EIP-1559’s choice of T is only 32 blocks!
– Regret decays slowly with T ; this T is likely too small... (and η is too large)

The regret (i.e., why the algorithm works well) 17



Does EIP-1559 have the right step size?

▶ Recall that EIP-1559 is (approximately) given by

pt+1 = pt · exp
(

1
8

(
usage − target

target

))
= pt · exp

(
1

8 · 15M

(
aT x − 15M

))
▶ We get O(1/

√
T ) regret with

η =
1

target
· 1√

2T

▶ Implies EIP-1559’s choice of T is only 32 blocks!
– Regret decays slowly with T ; this T is likely too small... (and η is too large)

The regret (i.e., why the algorithm works well) 17



Outline

The optimization problem
Single block
Multiple blocks (online)

The algorithm

The regret (i.e., why the algorithm works well)

Conclusion



What is EIP actually doing?

The Ethereum base fee algorithm is...

▶ Solving the 1d resource allocation problem

▶ ...with mirror descent
– regularizer: Bregman divergence generated by the negative entropy function

▶ ...in a way that’s low regret (for an appropriate step size)

Conclusion 18



What is EIP actually doing?

The Ethereum base fee algorithm is...
▶ Solving the 1d resource allocation problem

▶ ...with mirror descent
– regularizer: Bregman divergence generated by the negative entropy function

▶ ...in a way that’s low regret (for an appropriate step size)

Conclusion 18



What is EIP actually doing?

The Ethereum base fee algorithm is...
▶ Solving the 1d resource allocation problem

▶ ...with mirror descent
– regularizer: Bregman divergence generated by the negative entropy function

▶ ...in a way that’s low regret (for an appropriate step size)

Conclusion 18



What is EIP actually doing?

The Ethereum base fee algorithm is...
▶ Solving the 1d resource allocation problem

▶ ...with mirror descent
– regularizer: Bregman divergence generated by the negative entropy function

▶ ...in a way that’s low regret (for an appropriate step size)

Conclusion 18



What’s next?

Lot’s of open questions...
▶ Are we solving the right problem?

– Multidimensional fees? What are the resources?

– Another loss function?

▶ Is the step size well calibrated?
– Theory here and empirical results (e.g., Pai & Resnick 2024) suggest it’s not

▶ Should we choose another regularizer?

Conclusion 19



What’s next?

Lot’s of open questions...
▶ Are we solving the right problem?

– Multidimensional fees? What are the resources?

– Another loss function?

▶ Is the step size well calibrated?
– Theory here and empirical results (e.g., Pai & Resnick 2024) suggest it’s not

▶ Should we choose another regularizer?

Conclusion 19



What’s next?

Lot’s of open questions...
▶ Are we solving the right problem?

– Multidimensional fees? What are the resources?

– Another loss function?

▶ Is the step size well calibrated?
– Theory here and empirical results (e.g., Pai & Resnick 2024) suggest it’s not

▶ Should we choose another regularizer?

Conclusion 19



For more info, check out our paper!

Paper

Thank you!

Theo Diamandis
Research Partner, Bain Capital Crypto

tdiamandis@baincapital.com
@theo_diamandis
theodiamandis.com

Conclusion 20


	The optimization problem
	Single block
	Multiple blocks (online)

	The algorithm
	The regret (i.e., why the algorithm works well)
	Conclusion

