WTF is EIP-1559 actually doing?

Theo Diamandis work with Guillermo Angeris, Tarun Chitra, Alex Evans, and Ciamac Moallemi

Columbia Cryptoeconomics Conference 2024

EIP-1559 solves a specific online optimization problem

EIP-1559 solves a specific online optimization problem with a particular algorithm

EIP-1559 solves a specific online optimization problem with a particular algorithm that is low regret.

Outline

[The optimization problem](#page-4-0)

[Single block](#page-6-0) [Multiple blocks \(online\)](#page-21-0)

[The algorithm](#page-27-0)

The regret $(i.e., why the algorithm works well)$ $(i.e., why the algorithm works well)$

[Conclusion](#page-45-0)

Pricing algorithms solve the dual of a particular resource allocation problem (how to pack 'optimal' blocks).

[The optimization problem](#page-4-0) 2

Outline

[The optimization problem](#page-4-0) [Single block](#page-6-0) [Multiple blocks \(online\)](#page-21-0)

[The algorithm](#page-27-0)

The regret $(i.e., why the algorithm works well)$ $(i.e., why the algorithm works well)$

[Conclusion](#page-45-0)

Formalizing block building

 \blacktriangleright Mempool with *n* possible txns

- Txn *j* consumes gas $a_i \in \mathbb{R}_+$, has utility $q_i \in \mathbb{R}_+$
- $-$ Vector $x \in \{0,1\}^n$ encodes which txns are included in the block
- $-$ Set of allowable txns is $S \subseteq \{0,1\}^n$ (gas limit, MEV constraints, etc)

Formalizing block building

 \blacktriangleright Mempool with *n* possible txns

- Txn *j* consumes gas $a_i \in \mathbb{R}_+$, has utility $q_i \in \mathbb{R}_+$
- $-$ Vector $x \in \{0,1\}^n$ encodes which txns are included in the block
- $-$ Set of allowable txns is $S \subseteq \{0,1\}^n$ (gas limit, MEV constraints, etc)
- Gas usage of the block is $y = a^T x$.
- \triangleright Network's unhappiness with this usage given by loss function $\ell(y)$, for example:

$$
\ell(y) = \begin{cases} 0 & y = \text{target} \\ \infty & \text{otherwise} \end{cases}
$$

maximize
$$
q^T x - \ell(y)
$$

subject to $y = a^T x$
 $x \in S$.

[The optimization problem](#page-4-0) 4

maximize
$$
q^T x - \ell(y)
$$

subject to $y = a^T x$
 $x \in S$.

▶ Objective: Maximize utility of included txns minus loss incurred by the network

maximize
$$
q^T x - \ell(y)
$$

subject to $y = a^T x$
 $x \in S$.

 \triangleright Objective: Maximize utility of included txns minus loss incurred by the network

• Constraints: Utilization y is resource usage of included txns, and x is in the set of allowable txns $S \subseteq \{0,1\}^n$

maximize
$$
q^T x - \ell(y)
$$

subject to $y = a^T x$
 $x \in S$.

▶ But network designer cannot solve this in practice!

- Doesn't decide which txns are in a block (block builders do this)
- Doesn't know utilities q

maximize
$$
q^T x - \ell(y)
$$

subject to $y = a^T x$
 $x \in S$.

▶ But network designer cannot solve this in practice!

- Doesn't decide which txns are in a block (block builders do this)
- Doesn't know utilities q
- \triangleright Goal: set prices so that this problem is solved optimally on average

Duality theory: relaxing constraints to penalties

maximize
$$
q^T x - \ell(y)
$$

subject to $y = a^T x$
 $x \in S$.

- \blacktriangleright Network designer cares about utilization y, based on txns x
- \triangleright Block builders only care about which txns they can include

Duality theory: relaxing constraints to penalties

maximize
$$
q^T x - \ell(y)
$$

subject to $y = a^T x$
 $x \in S$

- \triangleright Network designer cares about utilization y, based on txns x
- ▶ Block builders only care about which txns they can include
- \triangleright We will 'decouple' utilization of network and that of tx producers

Duality theory: relaxing constraints to penalties

maximize
$$
q^T x - \ell(y)
$$

subject to $y = a^T x$
 $x \in S$

- \triangleright Network designer cares about utilization y, based on txns x
- ▶ Block builders only care about which txns they can include
- \triangleright We will 'decouple' utilization of network and that of tx producers
- **►** Correctly set penalty \rightarrow dual problem = original problem & utilizations are equal

Dual decouples tx producers and network

▶ Dual problem is to find the prices $p \in \mathbb{R}_+$ that minimize dual function $f(p)$

Dual decouples tx producers and network

▶ Dual problem is to find the prices $p \in \mathbb{R}_+$ that minimize dual function $f(p)$

From before, p are the prices for violating prev. constraint $y = a^T x$

– Relaxing constraint to penalty \rightarrow pay per unit violation

Dual decouples tx producers and network

▶ Dual problem is to find the prices $p \in \mathbb{R}_+$ that minimize dual function $f(p)$

- From before, p are the prices for violating prev. constraint $y = a^T x$
	- Relaxing constraint to penalty \rightarrow pay per unit violation
- \triangleright Dual problem is to minimize dual function $f(p)$,

minimize
$$
f(p) = \underbrace{\ell^*(p)}_{\text{network}} + \underbrace{\sup_{x \in S} (q - p \cdot a)^T x}_{\text{tx producers}},
$$

where ℓ^* is the conjugate function of ℓ (typically closed form)

Second term: block building problem

 \triangleright Maximize net utility (utility minus cost) subject to tx constraints

maximize $(q - p \cdot a)^T x$ subject to $x \in S$.

▶ Exact problem solved by block producers! \rightarrow Network can observe x^*

 \blacktriangleright Thus, we can compute the gradient of f:

$$
\nabla f(p) = y^*(p) - a^T x^*(p)
$$

Outline

[The optimization problem](#page-4-0)

[Single block](#page-6-0) [Multiple blocks \(online\)](#page-21-0)

[The algorithm](#page-27-0)

The regret $(i.e., why the algorithm works well)$ $(i.e., why the algorithm works well)$

[Conclusion](#page-45-0)

 \blacktriangleright But the transactions are not static! At each block:

 \blacktriangleright But the transactions are not static! At each block:

1. Network chooses prices p_t

 \triangleright But the transactions are not static! At each block:

- 1. Network chooses prices p_t
- 2. Users submit txns (with utilities q_t , gas usage a_t), possibly adversarially

▶ But the transactions are not static! At each block:

- 1. Network chooses prices p_t
- 2. Users submit txns (with utilities q_t , gas usage a_t), possibly adversarially
- 3. Network receives payoff $f_t(p_t)$ (from duality)

▶ But the transactions are not static! At each block:

- 1. Network chooses prices p_t
- 2. Users submit txns (with utilities q_t , gas usage a_t), possibly adversarially
- 3. Network receives payoff $f_t(p_t)$ (from duality)

 \triangleright New goal: dynamically choose prices p_t to minimize the average loss,

minimize
$$
\frac{1}{T} \sum_{t=1}^{T} f_t(p_t)
$$
.

Outline

[The optimization problem](#page-4-0) [Single block](#page-6-0) [Multiple blocks \(online\)](#page-21-0)

[The algorithm](#page-27-0)

The regret $(i.e., why the algorithm works well)$ $(i.e., why the algorithm works well)$

[Conclusion](#page-45-0)

Natural idea: mirror descent

▶ Next price p_{t+1} minimizes linear approx. of $f_t(p)$ plus a regularizer $D(p, p_t)$:

$$
p_{t+1} = \operatornamewithlimits{argmin}\limits_{\rho} \hat{f}_t(\rho) + \frac{1}{2\eta} D(\rho,\rho_t)
$$

where $\hat{f}_{t}(\rho)=f_{t}(\rho_{t})+\nabla f_{t}(\rho_{t})^{\mathsf{T}}(\rho-\rho_{t})$

Natural idea: mirror descent

▶ Next price p_{t+1} minimizes linear approx. of $f_t(p)$ plus a regularizer $D(p, p_t)$:

$$
p_{t+1} = \operatorname*{argmin}_{p} \hat{f}_t(p) + \frac{1}{2\eta} D(p, p_t)
$$

where $\hat{f}_{t}(\rho)=f_{t}(\rho_{t})+\nabla f_{t}(\rho_{t})^{\mathsf{T}}(\rho-\rho_{t})$

 \triangleright $D(p, p_t)$ is a strongly convex function that keeps p_{t+1} close to p_t

[The algorithm](#page-27-0) and the state of the state

Natural idea: mirror descent

 \triangleright Next price p_{t+1} minimizes linear approx. of $f_t(p)$ plus a regularizer $D(p, p_t)$:

$$
p_{t+1} = \operatorname*{argmin}_p \hat{f}_t(p) + \frac{1}{2\eta} D(p, p_t)
$$

where $\hat{f}_{t}(\rho)=f_{t}(\rho_{t})+\nabla f_{t}(\rho_{t})^{\mathsf{T}}(\rho-\rho_{t})$

- \triangleright $D(p, p_t)$ is a strongly convex function that keeps p_{t+1} close to p_t
- ▶ Example: recover vanilla gradient descent by setting $D(p, p_t) = ||(p p_t)||_2^2$

[The algorithm](#page-27-0) and the state of the state

Back to EIP-1559

▶ Choose the loss function and regularizer:

$$
\ell(y) = \begin{cases} 0 & y = 15M \\ \infty & \text{otherwise} \end{cases}
$$

$$
D(p, p_t) = p \cdot \log(p/p_t) - p
$$

otherwise

Back to EIP-1559

▶ Choose the loss function and regularizer:

$$
\ell(y) = \begin{cases} 0 & y = 15M \\ \infty & \text{otherwise} \end{cases}
$$

$$
D(p, p_t) = p \cdot \log(p/p_t) - p
$$

otherwise

▶ Recover the EIP-1559 & EIP-4844 update rule:

$$
p_{t+1} = p_t \cdot \exp\left(\eta(\underbrace{a^T x}_{\text{usage}} - \underbrace{15M}_{\text{target}})\right)
$$

▶ Lots of questions...

What's this regularizer doing?

▶ 'Bregman divergence' associated with the negative entropy function

▶ Asymmetric; penalizes decreases more than increases

– May explain positive overshoot of EIP-1559 (Leonardos et al. 2023)

 \blacktriangleright Is this the right regularizer?

- \blacktriangleright Is this the right regularizer?
- ▶ Is this loss function a good one?

- \blacktriangleright Is this the right regularizer?
- ▶ Is this loss function a good one?
- ▶ Is mirror descent a good update rule?

- \blacktriangleright Is this the right regularizer?
- \blacktriangleright Is this loss function a good one?
- ▶ Is mirror descent a good update rule?
- ▶ With what benchmark do we measure 'good'?

- \blacktriangleright Is this the right regularizer?
- \blacktriangleright Is this loss function a good one?
- ▶ Is mirror descent a good update rule?
- ▶ With what benchmark do we measure 'good'?
- \blacktriangleright What should η be?

Outline

[The optimization problem](#page-4-0) [Single block](#page-6-0)

[Multiple blocks \(online\)](#page-21-0)

[The algorithm](#page-27-0)

The regret (*i.e.*[, why the algorithm works well\)](#page-39-0)

[Conclusion](#page-45-0)

Benchmark: regret

 \blacktriangleright Metric: *regret* of the network:

$$
\mathrm{regret}(\mathcal{T}) = \frac{1}{\mathcal{T}} \left(\sum_{t=1}^{\mathcal{T}} f_t(\rho_t) - \min_{\rho^{\star}} \sum_{t=1}^{\mathcal{T}} f_t(\rho^{\star}) \right)
$$

Interpretation: difference between our update rule and the best fixed prices p^*

- $-$ Knowing p^* requires omniscience: assumes you know all future txns!
- Analogy: online vs. offline learning

The regret (*i.e.*[, why the algorithm works well\)](#page-39-0) 15

Choose the right step size, get low regret

 \blacktriangleright Choose the step size $n > 0$ such that

$$
\eta \leq \frac{1}{\text{target}} \cdot \frac{1}{\sqrt{27}} \cdot \sqrt{\log(\rho^{\text{max}}) - 1}
$$

 \blacktriangleright Then we have $regret(T) \leq \frac{C}{\sqrt{2}}$ T

 \triangleright This regret goes to zero as T gets large!

The regret (*i.e.*[, why the algorithm works well\)](#page-39-0) 16

Does EIP-1559 have the right step size?

 \triangleright Recall that EIP-1559 is (approximately) given by

$$
p_{t+1} = p_t \cdot \exp\left(\frac{1}{8} \left(\frac{\text{usage} - \text{target}}{\text{target}} \right)\right) = p_t \cdot \exp\left(\frac{1}{8 \cdot 15M} \left(a^T x - 15M\right)\right)
$$

Does EIP-1559 have the right step size?

 \triangleright Recall that EIP-1559 is (approximately) given by

$$
p_{t+1} = p_t \cdot \exp\left(\frac{1}{8} \left(\frac{\text{usage} - \text{target}}{\text{target}} \right) \right) = p_t \cdot \exp\left(\frac{1}{8 \cdot 15M} \left(a^T x - 15M \right) \right)
$$

▶ We get $O(1/\sqrt{2})$ T) regret with

$$
\eta = \frac{1}{\text{target}} \cdot \frac{1}{\sqrt{2\mathcal{T}}}
$$

The regret *(i.e.[, why the algorithm works well\)](#page-39-0)* 17

Does EIP-1559 have the right step size?

 \triangleright Recall that EIP-1559 is (approximately) given by

$$
p_{t+1} = p_t \cdot \exp\left(\frac{1}{8} \left(\frac{\text{usage} - \text{target}}{\text{target}} \right) \right) = p_t \cdot \exp\left(\frac{1}{8 \cdot 15M} \left(a^T x - 15M \right) \right)
$$

▶ We get $O(1/\sqrt{2})$ T) regret with

$$
\eta = \frac{1}{\text{target}} \cdot \frac{1}{\sqrt{27}}
$$

 \blacktriangleright Implies EIP-1559's choice of T is only 32 blocks!

– Regret decays slowly with T; this T is likely too small... (and η is too large)

Outline

[The optimization problem](#page-4-0)

[Single block](#page-6-0) [Multiple blocks \(online\)](#page-21-0)

[The algorithm](#page-27-0)

The regret $(i.e., why the algorithm works well)$ $(i.e., why the algorithm works well)$

[Conclusion](#page-45-0)

The Ethereum base fee algorithm is...

[Conclusion](#page-45-0) 18

The Ethereum base fee algorithm is...

▶ Solving the 1d resource allocation problem

The Ethereum base fee algorithm is...

- ▶ Solving the 1d resource allocation problem
- ▶ ...with mirror descent
	- regularizer: Bregman divergence generated by the negative entropy function

The Ethereum base fee algorithm is...

- ▶ Solving the 1d resource allocation problem
- ▶ ...with mirror descent
	- regularizer: Bregman divergence generated by the negative entropy function
- \blacktriangleright ...in a way that's low regret (for an appropriate step size)

What's next?

Lot's of open questions...

- \blacktriangleright Are we solving the right problem?
	- Multidimensional fees? What are the resources?
	- Another loss function?

What's next?

Lot's of open questions...

- \blacktriangleright Are we solving the right problem?
	- Multidimensional fees? What are the resources?
	- Another loss function?
- \blacktriangleright Is the step size well calibrated?
	- Theory here and empirical results (e.g., Pai & Resnick 2024) suggest it's not

What's next?

Lot's of open questions...

- \triangleright Are we solving the right problem?
	- Multidimensional fees? What are the resources?
	- Another loss function?
- \blacktriangleright Is the step size well calibrated?
	- Theory here and empirical results (e.g., Pai & Resnick 2024) suggest it's not
- ▶ Should we choose another regularizer?

For more info, check out our paper!

Thank you!

Theo Diamandis Research Partner, Bain Capital Crypto

 \boxtimes tdiamandis@baincapital.com **W** @theo diamandis \oplus theodiamandis.com