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EIP-1559 solves a specific online optimization
problem

with a particular algorithm that is low
regret.
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Pricing algorithms solve the dual of a particular resource
allocation problem (how to pack ‘optimal’ blocks).
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Formalizing block building

▶ Mempool with n possible txns
– Txn j consumes gas aj ∈ R+, has utility qj ∈ R+

– Vector x ∈ {0, 1}n encodes which txns are included in the block

– Set of allowable txns is S ⊆ {0, 1}n (gas limit, MEV constraints, etc)

▶ Gas usage of the block is y = aT x .

▶ Network’s unhappiness with this usage given by loss function ℓ(y), for example:

ℓ(y) =

{
0 y = target
∞ otherwise
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The resource allocation problem

maximize qT x − ℓ(y)

subject to y = aT x

x ∈ S .
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The resource allocation problem

maximize qT x − ℓ(y)

subject to y = aT x

x ∈ S .

▶ But network designer cannot solve this in practice!
– Doesn’t decide which txns are in a block (block builders do this)

– Doesn’t know utilities q

▶ Goal: set prices so that this problem is solved optimally on average
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Duality theory: relaxing constraints to penalties

maximize qT x − ℓ(y)

subject to y = aT x

x ∈ S .

▶ Network designer cares about utilization y , based on txns x

▶ Block builders only care about which txns they can include
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▶ We will ‘decouple’ utilization of network and that of tx producers

▶ Correctly set penalty → dual problem = original problem & utilizations are equal
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Dual decouples tx producers and network

▶ Dual problem is to find the prices p ∈ R+ that minimize dual function f (p)

▶ From before, p are the prices for violating prev. constraint y = aT x

– Relaxing constraint to penalty → pay per unit violation

▶ Dual problem is to minimize dual function f (p),

minimize f (p) = ℓ∗(p))︸ ︷︷ ︸
network

+ sup
x∈S

(q − p · a)T x︸ ︷︷ ︸
tx producers

,

where ℓ∗ is the conjugate function of ℓ (typically closed form)
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Second term: block building problem

▶ Maximize net utility (utility minus cost) subject to tx constraints

maximize (q − p · a)T x
subject to x ∈ S .

▶ Exact problem solved by block producers! → Network can observe x⋆

▶ Thus, we can compute the gradient of f :

∇f (p) = y⋆(p)− aT x⋆(p)
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Online problem

▶ But the transactions are not static! At each block:

1. Network chooses prices pt

2. Users submit txns (with utilities qt , gas usage at), possibly adversarially

3. Network receives payoff ft(pt) (from duality)

▶ New goal: dynamically choose prices pt to minimize the average loss,

minimize
1
T

T∑
t=1

ft(pt).
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Natural idea: mirror descent

▶ Next price pt+1 minimizes linear approx. of ft(p) plus a regularizer D(p, pt):

pt+1 = argmin
p

f̂t(p) +
1
2η

D(p, pt)

where f̂t(p) = ft(pt) +∇ft(pt)
T (p − pt)

▶ D(p, pt) is a strongly convex function that keeps pt+1 close to pt

▶ Example: recover vanilla gradient descent by setting D(p, pt) = ∥(p − pt)∥2
2
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Back to EIP-1559

▶ Choose the loss function and regularizer:

ℓ(y) =

{
0 y = 15M
∞ otherwise D(p, pt) = p · log(p/pt)− p

▶ Recover the EIP-1559 & EIP-4844 update rule:

pt+1 = pt · exp
(
η(aT x︸︷︷︸

usage

− 15M︸︷︷︸
target

)
)

▶ Lots of questions...
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What’s this regularizer doing?

pt ept
p

p log(p/pt)− p

▶ ‘Bregman divergence’ associated with the negative entropy function

▶ Asymmetric; penalizes decreases more than increases
– May explain positive overshoot of EIP-1559 (Leonardos et al. 2023)

The algorithm 13



More questions

▶ Is this the right regularizer?

▶ Is this loss function a good one?

▶ Is mirror descent a good update rule?

▶ With what benchmark do we measure ‘good’?

▶ What should η be?
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More questions

▶ Is this the right regularizer?

▶ Is this loss function a good one?

▶ Is mirror descent a good update rule?

▶ With what benchmark do we measure ‘good’?

▶ What should η be?

The algorithm 14



More questions

▶ Is this the right regularizer?

▶ Is this loss function a good one?

▶ Is mirror descent a good update rule?

▶ With what benchmark do we measure ‘good’?

▶ What should η be?

The algorithm 14



More questions

▶ Is this the right regularizer?

▶ Is this loss function a good one?

▶ Is mirror descent a good update rule?

▶ With what benchmark do we measure ‘good’?

▶ What should η be?

The algorithm 14



More questions

▶ Is this the right regularizer?

▶ Is this loss function a good one?

▶ Is mirror descent a good update rule?

▶ With what benchmark do we measure ‘good’?

▶ What should η be?

The algorithm 14



Outline

The optimization problem
Single block
Multiple blocks (online)

The algorithm

The regret (i.e., why the algorithm works well)

Conclusion



Benchmark: regret

▶ Metric: regret of the network:

regret(T ) =
1
T

(
T∑
t=1

ft(pt)−min
p⋆

T∑
t=1

ft(p
⋆)

)

▶ Interpretation: difference between our update rule and the best fixed prices p⋆

– Knowing p⋆ requires omniscience: assumes you know all future txns!

– Analogy: online vs. offline learning

The regret (i.e., why the algorithm works well) 15



Choose the right step size, get low regret

▶ Choose the step size η > 0 such that

η ≤ 1
target

· 1√
2T

·
√
log(pmax)− 1

▶ Then we have
regret(T ) ≤ C√

T

▶ This regret goes to zero as T gets large!

The regret (i.e., why the algorithm works well) 16



Does EIP-1559 have the right step size?

▶ Recall that EIP-1559 is (approximately) given by

pt+1 = pt · exp
(

1
8

(
usage − target

target

))
= pt · exp

(
1

8 · 15M

(
aT x − 15M

))

▶ We get O(1/
√
T ) regret with

η =
1

target
· 1√

2T

▶ Implies EIP-1559’s choice of T is only 32 blocks!
– Regret decays slowly with T ; this T is likely too small... (and η is too large)
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What is EIP actually doing?

The Ethereum base fee algorithm is...

▶ Solving the 1d resource allocation problem

▶ ...with mirror descent
– regularizer: Bregman divergence generated by the negative entropy function

▶ ...in a way that’s low regret (for an appropriate step size)

Conclusion 18
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What’s next?

Lot’s of open questions...
▶ Are we solving the right problem?

– Multidimensional fees? What are the resources?

– Another loss function?

▶ Is the step size well calibrated?
– Theory here and empirical results (e.g., Pai & Resnick 2024) suggest it’s not

▶ Should we choose another regularizer?

Conclusion 19
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For more info, check out our paper!

Paper

Thank you!

Theo Diamandis
Research Partner, Bain Capital Crypto

tdiamandis@baincapital.com
@theo_diamandis
theodiamandis.com

Conclusion 20


	The optimization problem
	Single block
	Multiple blocks (online)

	The algorithm
	The regret (i.e., why the algorithm works well)
	Conclusion

