Dynamic Pricing for Non-fungible Resources

Designing Multi-dimensional Blockchain Fee Markets

Theo Diamandis, MIT \& Bain Capital Crypto

Based on work by T. Diamandis, A. Evans, T. Chitra, G. Angeris

CryptoEconDay @ ETHDenver 2023

Fee markets with fixed relative prices are inefficient

Fee markets with fixed relative prices are inefficient

Our work: a framework to optimally set multi-dimensional fees

Outline

Why are transactions so expensive?

Transactions and resources

The resource allocation problem

Setting prices via duality

Example: 1d prices hurt networks

Why are transactions so expensive?

Fixed relative prices lead to DoS attacks

- All opcodes have fixed relative prices to each other (measured in gas)
- Potential mismatch between relative prices \& resource usage leads to resource exhaustion attacks (DoS attacks)
- EXTCODESIZE attack in 2016 exploited disk read mispricing
- Opcode prices had to be manually adjusted (EIP-150)

Fixed relative prices limit throughput

Mempool

bandwidth
\square bandwidth

Fixed relative prices limit throughput

1d market
(\$gas = 3)

Fixed relative prices limit throughput

1d market
(\$gas = 3)

Fixed relative prices limit throughput

1d market
(\$gas $=3$)

Fixed relative prices limit throughput

1d market
(\$gas = 3)

> 2d market $(\$ C P U=3, \$ B W=1)$

Fixed relative prices limit throughput

1d market
(\$gas =3)

2d market $(\$ C P U=3, \$ B W=1)$

Fixed relative prices limit throughput

1d market
(\$gas =3)

2d market $(\$ C P U=3, \$ B W=1)$

Orthogonal resources should be priced separately

Orthogonal resources should be priced separately

We need a mechanism to design fee markets

Outline

Why are transactions so expensive?

Transactions and resources

The resource allocation problem

Setting prices via duality

Example: 1d prices hurt networks

Transactions and resources

But what is a resource?

Transactions and resources

But what is a resource?

- Anything that can be metered!

But what is a resource?

- Anything that can be metered!
- Blobs (EIP-2242 \& EIP-4844)

But what is a resource?

- Anything that can be metered!
- Blobs (EIP-2242 \& EIP-4844)
- Compute, memory, storage

But what is a resource?

- Anything that can be metered!
- Blobs (EIP-2242 \& EIP-4844)
- Compute, memory, storage
- Opcodes

But what is a resource?

- Anything that can be metered!
- Blobs (EIP-2242 \& EIP-4844)
- Compute, memory, storage
- Opcodes
- Sequences of opcodes

But what is a resource?

- Anything that can be metered!
- Blobs (EIP-2242 \& EIP-4844)
- Compute, memory, storage
- Opcodes
- Sequences of opcodes
- Compute on a specific core

But what is a resource?

- Anything that can be metered!
- Blobs (EIP-2242 \& EIP-4844)
- Compute, memory, storage
- Opcodes
- Sequences of opcodes
- Compute on a specific core
- ...

Let's formalize this

- A transaction j consumes a vector of resources $a_{j} \in \mathbb{R}_{+}^{m}$
- Entry $\left(a_{j}\right)_{i}$ denotes the amount of resource i consumed by $\mathrm{tx} j$

Let's formalize this

- A transaction j consumes a vector of resources $a_{j} \in \mathbb{R}_{+}^{m}$
- Entry $\left(a_{j}\right)_{i}$ denotes the amount of resource i consumed by $t \times j$
- The vector $x \in\{0,1\}^{n}$ records which of n possible txns are included in a block
- Entry $x_{j}=1$ if $\mathrm{t} x j$ is included and 0 otherwise

Let's formalize this

- A transaction j consumes a vector of resources $a_{j} \in \mathbb{R}_{+}^{m}$
- Entry $\left(a_{j}\right)_{i}$ denotes the amount of resource i consumed by $t \times j$
- The vector $x \in\{0,1\}^{n}$ records which of n possible txns are included in a block
- Entry $x_{j}=1$ if $\mathrm{t} x j$ is included and 0 otherwise
- The quantity of resources consumed by this block is then

$$
y=\sum_{j=1}^{n} x_{j} a_{j}=A x
$$

We constrain \& charge for each resource used

- Define a resource consumption target b^{\star}
- Deviation from the target is $A x-b^{\star}$
- In Ethereum, $b^{\star}=15 \mathrm{M}$ gas

We constrain \& charge for each resource used

- Define a resource consumption target b^{\star}
- Deviation from the target is $A x-b^{\star}$
- In Ethereum, $b^{\star}=15 \mathrm{M}$ gas
- Define a resource consumption limit b
- Txns included must satisfy $A x \leq b$

We constrain \& charge for each resource used

- Define a resource consumption target b^{\star}
- Deviation from the target is $A x-b^{\star}$
- In Ethereum, $b^{\star}=15 \mathrm{M}$ gas
- Define a resource consumption limit b
- Txns included must satisfy $A x \leq b$
- Charge for usage of each resource (e.g., EIP-1559)
- Prices p, mean that transaction j costs (this is burned)

$$
p^{T} a_{j}=\sum_{i=1}^{m} p_{i}\left(a_{j}\right)_{i}
$$

But how do we determine prices?

- We want a few properties:
- $(A x)_{i}=b_{i}^{\star} \rightarrow$ no update
- $(A x)_{i}>b_{i}^{\star} \rightarrow p_{i}$ increases
- $(A x)_{i}<b_{i}^{\star} \rightarrow p_{i}$ decreases

But how do we determine prices?

- We want a few properties:
- $(A x)_{i}=b_{i}^{\star} \rightarrow$ no update
- $(A x)_{i}>b_{i}^{\star} \rightarrow p_{i}$ increases
- $(A x)_{i}<b_{i}^{\star} \rightarrow p_{i}$ decreases
- Proposal:

$$
p_{i}^{k+1}=p_{i}^{k} \cdot \exp \left(\eta\left(A x-b^{\star}\right)_{i}\right)
$$

But how do we determine prices?

- We want a few properties:
- $(A x)_{i}=b_{i}^{\star} \rightarrow$ no update
- $(A x)_{i}>b_{i}^{\star} \rightarrow p_{i}$ increases
- $(A x)_{i}<b_{i}^{\star} \rightarrow p_{i}$ decreases
- Proposal:

$$
p_{i}^{k+1}=p_{i}^{k} \cdot \exp \left(\eta\left(A x-b^{\star}\right)_{i}\right)
$$

Is this a good update rule?

Update rules are implicitly solving an optimization problem

Update rules are implicitly solving an optimization problem

Specific choice of objective by network designer \Longrightarrow specific update rule

Outline

Why are transactions so expensive?

Transactions and resources

The resource allocation problem

Setting prices via duality

Example: 1d prices hurt networks

The resource allocation problem

Setting (for now):

Network designer is omniscient and determines txns in each block

Loss function is network's unhappiness with resource usage

- Network designer determines loss function for resource allocation problem; e.g.:

$$
\ell(y)= \begin{cases}0 & y=b^{\star} \\ \infty & \text { otherwise }\end{cases}
$$

Loss function is network's unhappiness with resource usage

- Network designer determines loss function for resource allocation problem; e.g.:

$$
\begin{aligned}
& \ell(y)= \begin{cases}0 & y=b^{\star} \\
\infty & \text { otherwise }\end{cases} \\
& \ell(y)= \begin{cases}0 & y \leq b^{\star} \\
\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

We encode all tx constraints in set S

- $S \subseteq\{0,1\}^{n}$ is the set of allowable transactions
- Network constraints, e.g., $A x \leq b$
- Interactions among txns, e.g., bidders for MEV opportunity

We encode all tx constraints in set S

- $S \subseteq\{0,1\}^{n}$ is the set of allowable transactions
- Network constraints, e.g., $A x \leq b$
- Interactions among txns, e.g., bidders for MEV opportunity
- We consider the convex hull of $S: \operatorname{conv}(S)$
- This means j can be 'partially included'
$-x_{j} \in(0,1) \Longrightarrow \mathrm{tx} j$ included after roughly $1 / x_{j}$ blocks

Transaction producers get utility from each included $t x$

- Tx producers $=$ users + validators

Transaction producers get utility from each included $t x$

- Tx producers $=$ users + validators
- If $\mathrm{tx} j$ is included, tx producers get (joint) utility q_{j}

Transaction producers get utility from each included $t x$

- Tx producers $=$ users + validators
- If $\mathrm{tx} j$ is included, tx producers get (joint) utility q_{j}
- We almost never know q in practice

Transaction producers get utility from each included $t x$

- Tx producers $=$ users + validators
- If $\mathrm{tx} j$ is included, tx producers get (joint) utility q_{j}
- We almost never know q in practice
- But we will see that the network does not need to know q !

The resource allocation problem

$$
\begin{array}{ll}
\operatorname{maximize} & q^{T} x-\ell(y) \\
\text { subject to } & y=A x \\
& x \in \operatorname{conv}(S)
\end{array}
$$

The resource allocation problem

$$
\begin{array}{ll}
\operatorname{maximize} & q^{T} x-\ell(y) \\
\text { subject to } & y=A x \\
& x \in \operatorname{conv}(S) .
\end{array}
$$

- Objective: Maximize utility of included txns minus the loss incurred by the network

The resource allocation problem

$$
\begin{array}{ll}
\operatorname{maximize} & q^{T} x-\ell(y) \\
\text { subject to } & y=A x \\
& x \in \operatorname{conv}(S) .
\end{array}
$$

- Objective: Maximize utility of included txns minus the loss incurred by the network
- Constraints: Utilization y is resource usage of included txns, and x is in the set of allowable txns $S \subseteq\{0,1\}^{n}$ (can be very complex/hard to solve!)

The resource allocation problem

$$
\begin{array}{ll}
\operatorname{maximize} & q^{T} x-\ell(y) \\
\text { subject to } & y=A x \\
& x \in \operatorname{conv}(S)
\end{array}
$$

- But network designer cannot solve this in practice!
- Doesn't decide which txns are in a block (block builders do this)
- Doesn't know utilities q
- Cannot include fractional $\mathrm{txns}\left(x_{i} \in(0,1)\right)$

Outline

```
Why are transactions so expensive?
Transactions and resources
The resource allocation problem
```

Setting prices via duality

Example: 1d prices hurt networks

Duality theory: relaxing constraints to penalties

$$
\begin{array}{ll}
\operatorname{maximize} & q^{T} x-\ell(y) \\
\text { subject to } & y=A x \\
& x \in \operatorname{conv}(S)
\end{array}
$$

- Network designer cares about utilization y, based on txns x
- Block builders only care about which txns they can include

Duality theory: relaxing constraints to penalties

$$
\begin{array}{ll}
\operatorname{maximize} & q^{T} x-\ell(y) \\
\text { subject to } & y=A x \\
& x \in \operatorname{conv}(S)
\end{array}
$$

- Network designer cares about utilization y, based on txns x
- Block builders only care about which txns they can include
- We will 'decouple' utilization of network and that of tx producers

Duality theory: relaxing constraints to penalties

$$
\begin{array}{ll}
\operatorname{maximize} & q^{T} x-\ell(y) \\
\text { subject to } & y=A x \\
& x \in \operatorname{conv}(S)
\end{array}
$$

- Network designer cares about utilization y, based on txns x
- Block builders only care about which txns they can include
- We will 'decouple' utilization of network and that of tx producers
- Correctly set penalty \rightarrow dual problem $=$ original problem \& utilizations are equal

Dual decouples tx produces and network

- Problem is separable, so $g(p)$ decomposes into two easily interpretable terms:

$$
g(p)=\underbrace{\ell^{*}(p)}_{\text {network }}+\underbrace{\sup _{x \in \operatorname{conv}(S)}\left(q-A^{T} p\right)^{T} x}_{\mathrm{tx} \text { producers }}
$$

Dual decouples tx produces and network

- Problem is separable, so $g(p)$ decomposes into two easily interpretable terms:

$$
g(p)=\underbrace{\ell^{*}(p)}_{\text {network }}+\underbrace{\sup _{x \in \operatorname{conv}(S)}\left(q-A^{T} p\right)^{T} x}_{\mathrm{tx} \text { producers }}
$$

- Dual problem is to find the prices p that minimize $g(p)$

Dual decouples tx produces and network

- Problem is separable, so $g(p)$ decomposes into two easily interpretable terms:

$$
g(p)=\underbrace{\ell^{*}(p)}_{\text {network }}+\underbrace{\sup _{x \in \operatorname{conv}(S)}\left(q-A^{T} p\right)^{T} x}_{\mathrm{tx} \text { producers }}
$$

- Dual problem is to find the prices p that minimize $g(p)$
- From before, p are the prices for violating prev. constraint $y=A x$
- Relaxing constraint to penalty \rightarrow pay per unit violation

Dual decouples tx produces and network

- Problem is separable, so $g(p)$ decomposes into two easily interpretable terms:

$$
g(p)=\underbrace{\ell^{*}(p)}_{\text {network }}+\underbrace{\sup _{x \in \operatorname{conv}(S)}\left(q-A^{T} p\right)^{T} x}_{\mathrm{tx} \text { producers }}
$$

- Dual problem is to find the prices p that minimize $g(p)$
- From before, p are the prices for violating prev. constraint $y=A x$
- Relaxing constraint to penalty \rightarrow pay per unit violation
- Evaluating the 1st term is easy: can be done on chain! Let's look at the 2nd term

Second term: block building problem

- Maximize net utility (utility minus cost) subject to tx constraints

$$
\begin{array}{ll}
\operatorname{maximize} & \left(q-A^{T} p\right)^{T} x \\
\text { subject to } & x \in \operatorname{conv}(S) .
\end{array}
$$

Second term: block building problem

- Maximize net utility (utility minus cost) subject to tx constraints

$$
\begin{array}{ll}
\operatorname{maximize} & \left(q-A^{T} p\right)^{T} x \\
\text { subject to } & x \in \operatorname{conv}(S)
\end{array}
$$

- Same optimal value if we use S instead of $\operatorname{conv}(S)$

Second term: block building problem

- Maximize net utility (utility minus cost) subject to $t \times$ constraints

$$
\begin{array}{ll}
\operatorname{maximize} & \left(q-A^{T} p\right)^{T} x \\
\text { subject to } & x \in \operatorname{conv}(S)
\end{array}
$$

- Same optimal value if we use S instead of $\operatorname{conv}(S)$
- Exact problem solved by block producers! \rightarrow Network can observe x^{\star}

What do we get at optimality?

- Let p^{\star} be a minimizer of $g(p)$, i.e., prices are set optimally
- Assume the block building problem has optimal solution x^{\star}
- The optimality conditions are

$$
\nabla g\left(p^{\star}\right)=y^{\star}-A x^{\star}=0
$$

where y^{\star} satisfies $\nabla \ell\left(y^{\star}\right)=p^{\star}$

Key results

1. Prices that minimize g charge the $t \times$ producers exactly the marginal costs faced by the network:

$$
\nabla \ell\left(A x^{\star}\right)=p^{\star}
$$

Key results

1. Prices that minimize g charge the $t \times$ producers exactly the marginal costs faced by the network:

$$
\nabla \ell\left(A x^{\star}\right)=p^{\star}
$$

2. These prices incentivize $t \times$ producers to include txns that maximize welfare generated $q^{T} x$ minus the network loss $\ell(A x)$

Cool. So how do we minimize $g(p)$?

- We can compute the gradient:

$$
\nabla g(p)=y^{\star}(p)-A x^{\star}(p)
$$

Cool. So how do we minimize $g(p)$?

- We can compute the gradient:

$$
\nabla g(p)=y^{\star}(p)-A x^{\star}(p)
$$

- Network determines $y^{\star}(p)$ (computationally easy)

Cool. So how do we minimize $g(p)$?

- We can compute the gradient:

$$
\nabla g(p)=y^{\star}(p)-A x^{\star}(p)
$$

- Network determines $y^{\star}(p)$ (computationally easy)
- Network observes $x^{\star}(p)$ from previous block (block building problem soln)

Cool. So how do we minimize $g(p)$?

- We can compute the gradient:

$$
\nabla g(p)=y^{\star}(p)-A x^{\star}(p)
$$

- Network determines $y^{\star}(p)$ (computationally easy)
- Network observes $x^{\star}(p)$ from previous block (block building problem soln)
- Then network applies favorite optimization method (e.g., gradient descent)

$$
p^{k+1}=p^{k}-\eta \nabla g\left(p^{k}\right)
$$

Some simple examples:

Update rule

$$
p^{k+1}=p^{k}-\eta\left(b^{\star}-A x^{\star}\right)
$$

Loss function

$$
\ell(y)= \begin{cases}0 & y=b^{\star} \\ \infty & \text { otherwise }\end{cases}
$$

Some simple examples:

Update rule

$$
p^{k+1}=p^{k}-\eta\left(b^{\star}-A x^{\star}\right)
$$

$$
p^{k+1}=\left(p^{k}-\eta\left(b^{\star}-A x^{\star}\right)\right)_{+} \quad \ell(y)= \begin{cases}0 & y \leq b^{\star} \\ \infty & \text { otherwise }\end{cases}
$$

Some simple examples:

Update rule

$$
p^{k+1}=p^{k}-\eta\left(b^{\star}-A x^{\star}\right)
$$

Loss function

$$
\ell(y)= \begin{cases}0 & y=b^{\star} \\ \infty & \text { otherwise }\end{cases}
$$

See paper, appendix C

$$
p^{k+1}=\left(p^{k}-\eta\left(b^{\star}-A x^{\star}\right)\right)_{+} \quad \ell(y)= \begin{cases}0 & y \leq b^{\star} \\ \infty & \text { otherwise }\end{cases}
$$

$$
p_{i}^{k+1}=p_{i}^{k} \cdot \exp \left(\eta\left(A x-b^{\star}\right)_{i}\right)
$$

Outline

> Why are transactions so expensive?

> Transactions and resources

> The resource allocation problem

> Setting prices via duality

Example: 1d prices hurt networks

Example: 1d prices hurt networks

Multidimensional fees increase throughput

Even when the tx distribution shifts

And resource utilitaztion better tracks targets

Multidimensional fees

1d fees

Conclusion: choose your objective, not the update rule!

Choice of objective function by network designer yields an "optimal" price update rule via our optimization-based framework

For more info, check out our paper!

Thank you!

Theo Diamandis Bain Capital Crypto \& MIT
© Otheo_diamandis

