Exploiting problem structure In
optimization with GeNIOS.ji

(GEneralized Newtown Inexact Operator Splitting solver)

Theo Diamandis, Zachary Frangella, Bartolomeo Stellato, Madeleine Udell

MIT JuliaLab - Juliacon 2023

Exploiting structure yields huge speedups

(More than simply using SparseArrays)

 Most optimization problems have a lot of problem structure

Exploiting structure yields huge speedups

(More than simply using SparseArrays)

 Most optimization problems have a lot of problem structure

N\

\ \

Huber fitting (as a quadratic program)

Exploiting structure yields huge speedups

(More than simply using SparseArrays)

 Most optimization problems have a lot of problem structure

\\ "'3"' AR ST T, Rt

\ \

Huber fitting (as a quadratic program) Markowitz Portfolio Optimization

Exploiting structure yields huge speedups

(More than simply using SparseArrays)

 Most optimization problems have a lot of problem structure

Exploiting structure yields huge speedups

(More than simply using SparseArrays)

 Most optimization problems have a lot of problem structure

 Many solvers force problems into a standard conic form

« Num variables n — 4n: solve time can increase 2-3 orders of magnitude

Exploiting structure yields huge speedups

(More than simply using SparseArrays)

 Most optimization problems have a lot of problem structure

 Many solvers force problems into a standard conic form

« Num variables n — 4n: solve time can increase 2-3 orders of magnitude

 Harder to take advantage of problem data structure in this form

Example: robust (Huber) regression

Quadratic program formulation has ~5x the variables!

c e T T
minimize YN, 2% (aTz — b;) + Ay ||z |1, minimize 77 r + 217 (s + 1) + A1g
subject to Ax —r—s+t=25>
2 < T C] S L S q
Kh“b(w) _Jw w| <1
2lw| —1 |w| > 1. 0<s,t

Huber robust regression Equivalent quadratic program

Example: robust (Huber) regression

Quadratic program formulation has ~5x the variables!

« . T T
minimize 3, , " (alz — b;) + A1]z|1, minimize 77 r + 217 (s + 1) + A1g
subject to Ax —r—s+t=25>
Khub(w): w? w| <1 _quSq
2lw| —1 |w| > 1. \\ 0<s,t
Huber robust regression alent quadratic program

Example: robust (Huber) regression

Quadratic program formulation has ~5x the variables!

« . T T
minimize SN, 0% 0Tz — b;) + Ai||z]|1, minimize 77 r + 217 (s + 1) + A1g
subject to Arxr —r—s+t=2=
() = w) < 1 —IsT=d
2wl —1 |w| > 1. \\ 0<s,t
Huber robust regression alent quadratic program

GeNIOS.jl solves convex problems...

minimize f(x) + g(z)

subject to Mxz — z = c,

GeNIOS.jl solves convex problems...

), VAx), v V)

minimize f(x) + g(z)

subject to Mxz — z = c,

GeNIOS.jl solves convex problems...

(), VI, v Vi) v e (), prox,, (2)

minimize f(x) + g(z)

subject to Mxz — z = c,

GeNIOS.jl solves convex problems...

(), Vfx), v V) ille(). prox, (2)

minimize f(x) + g(z)

subject to Mxz — z = c,

/

minimize (1/2)z! Pz + ¢’z

subject to [< Az < u,

Quadratic Programs

GeNIOS.jl solves convex problems...

(), Vfx), v V) ille(). prox, (2)

minimize f(x) + g(z)

subject to Mxz — z = c,

/

minimize (1/2)z! Pz + ¢’z

subject to [< Az < u,

Quadratic Programs

minimize (1/2)z" Pz + ¢’ z

subject to Axr —z=rc

z €, >

GeNIOS.jl solves convex problems...

(), Vfx), v V) ille(). prox, (2)

minimize f(x) + g(z)

subject to Mxz — z = c,

minimize (1/2)ZI3TP£E 4 qTiE \ minimize ;f(a?x —b;) + (1/2)A2)|zl5 + A1]l2l2

subject to [< Ax < u, subject to x — 2z =0

Machine Learning Problems

Quadratic Programs

minimize (1/2)z" Pz + ¢’ z

subject to Axr —z=rc

z €, >

...using inexact ADMWM

...using inexact ADMWM

« ADMM involves solving two subproblems at each iteration

...using inexact ADMWM

« ADMM involves solving two subproblems at each iteration

* \We approximate these ADMM subproblems

...using inexact ADMWM

« ADMM involves solving two subproblems at each iteration

* \We approximate these ADMM subproblems

e 2nd order approximation to 1st subproblem — linear system solve

...using inexact ADMWM

« ADMM involves solving two subproblems at each iteration

* \We approximate these ADMM subproblems

e 2nd order approximation to 1st subproblem — linear system solve

* Only need function, gradient, HVP (auto-diff is useful here)

...using inexact ADMWM

« ADMM involves solving two subproblems at each iteration

* \We approximate these ADMM subproblems

e 2nd order approximation to 1st subproblem — linear system solve

* Only need function, gradient, HVP (auto-diff is useful here)

. Approximate prox, aproxg(v), operator for 2nd subproblem

...using inexact ADMWM

« ADMM involves solving two subproblems at each iteration

* \We approximate these ADMM subproblems

e 2nd order approximation to 1st subproblem — linear system solve

* Only need function, gradient, HVP (auto-diff is useful here)

. Approximate prox, aproxg(v), operator for 2nd subproblem

 Then we Inexactly solve these approximate subproblems

Back to robust (Huber) regression

Quadratic program formulation has ~5x the variables!

c e T T
minimize 3, " (alz — b;) + A1]z|1, minimize 77 r + 217 (s + 1) + A1g
subject to Arxr —r—s+t=2=
- —q<T=<q
Kh“b(w) _Jw w| <1
2lw| -1 |w| > 1. 0<s,t

Huber robust regression Equivalent quadratic program

* Can try solving QP with/without inexact subproblem solves

MLSolver only needs loss & regularization

minimize Zﬁ(a?az —b;) + Mllzll1 + (1/2)Xe2]| 2|3,

1=1

f(x) abs (x) 1 0.5%x"2 abs (x) 0.5
Al = A

A2 = 0.0
solver = GeNIOS.MLSolver(f, A1, A2, A, b)
res = solve!(solver; options=GeNIOS.SolverOptions(use_dual_gap=false))

MLSolver only needs loss & regularization

minimize Zﬁ(a?m —b;) + Ailz|ls + (1/2) 2]z,
i=1

* Supply conjugate -> can use duality gap convergence criterion

f(x) abs (x) | 0.5%x"2 abs (x) 0.5
Al = A

A2 = 0.0
solver = GeNIOS.MLSolver(f, A1, A2, A, b)
res = solve!(solver; options=GeNIOS.SolverOptions(use_dual_gap=false))

QPSolver just needs problem data mats/vecs
(Can be supplied through JuMP)

minimize (1/2)z! Pz + ¢’z
subject to [< Ax < u,

solver = GeNIOS.QPSolver(P, q, A, 1, u)

res solve!(solver)

QPSolver just needs problem data mats/vecs
(Can be supplied through JuMP)

minimize (1/2)z! Pz + ¢’z
subject to [< Ax < u,

solver

Ires

MLSolver gives 35x-60x speedup

10"

O
L e M Solver primal
O 10° F QPSolver primal
1 | a L] = QPSolver (exact) primal
I e MLSolver dual
© - {\N\ QPSolver dual
O O 5 10t F e QPSolver (exact) dual
1L _AA
10 O =
— ~
w O NC\]
= 2 T W
= 10 f 0) \
o O
O A [n o ‘
0 L 10 "
=it —— ML linsys a'd
O [QP linsys
O— QP (exact) linsys
—ﬁ— ML solve 1072
QP solve B
1072 F A— O — QP (exact) solve
I
1023 10°°° 1033 10*0 0 100 200 300 400

Problem size n Time (s)

Sparsification slows mat-vec-products

(explains wider gap bt linsys & full solve)

Dense block in sparse matrix = bad! |

S/
/

Sparsification slows mat-vec-products

(explains wider gap bt linsys & full solve)

Dense block in sparse matrix = bad! |

What about custom matrix type here?

\ \

Sparsification slows mat-vec-products

(explains wider gap bt linsys & full solve)

Dense block in sparse matrix = bad! |

What about custom matrix type here?
Sounds like a lot of work...

\ \

Markowitz Portfolio Optimization

l.e., maximize risk-adjusted return of a long-only portfolio

minimize —uplx + (v/2)z! Xo
subject to 11z =1
x > 0,

Markowitz Portfolio Optimization

l.e., maximize risk-adjusted return of a long-only portfolio

minimize —uplx + (v/2)z! Xo
subject to 11z =1
x > 0,

. Covariance is diagonal + low rank: >~ = D + FF! where F € R™X k < n

Markowitz Portfolio Optimization

l.e., maximize risk-adjusted return of a long-only portfolio

minimize —uplx + (v/2)z! Xo
subject to 11z =1
x > 0,

. Covariance is diagonal + low rank: >~ = D + FF! where F € R™X k < n

* This is a quadratic program:

minimize (1/2)a’ Px 4 ¢’z

subject to [< Az < u,

How can we take advantage of structure?

Traditional method: solve equivalent QP with n+k variables

* An equivalent QP w new variable y & R*:

minimize vzl Dz +yyly — plx
subject to y = Flz
112z =1

x > 0.

e Pro: much faster solve

 Con: burden on user to do reformulation (can be very complex in other cases!)

Julia way: multiple dispatch

We can create fast mat-vec-products for constraint & obj matrices

LinearMaps

F lm = LinearMap(F)
P = y+(F_lm«F_lm' + Diagonal(d))

M = vcat(LinearMap(I, n), ones(1, n))

solver = GeNIOS.QPSolver(P, g, M, 1, u; check dims=false);
res = solve!(solver; options=GeNIOS.SolverOptions(eps_abs=1e-6));

Julia way: multiple dispatch

We can create fast mat-vec-products for constraint & obj matrices

LinearMaps

F lm = LinearMap(F)
P = y+(F_lm«F_lm' + Diagonal(d))

M = vcat(LinearMap(I, n), ones(1, n))

solver = GeNIOS.QPSolver(P, g, M, 1, u; check dims=false);
res = solve!(solver; options=GeNIOS.SolverOptions(eps_abs=1e-6));

* But the solver allows us to solve an even more interesting formulation...

We don’t even need to use a QP solver!

projection onto the simplex is quite fast itself

We don’t even need to use a QP solver!

projection onto the simplex is quite fast itself

e Equivalent convex (non-QP) problem:

minimize —plxz + (v/2)x! X + I5(2)
subject to x — z =0,

. where I is an indication function of the set S = {7 | 1’z = 1 and z > 0}

We don’t even need to use a QP solver!

projection onto the simplex is quite fast itself

e Equivalent convex (non-QP) problem:

minimize —plxz + (v/2)x! X + I5(2)
subject to x — z =0,

. where I is an indication function of the set S = {7 | 1’z = 1 and z > 0}

« Z-subproblem is a projection onto S

We don’t even need to use a QP solver!

projection onto the simplex is quite fast itself

e Equivalent convex (non-QP) problem:

minimize —plxz + (v/2)x! X + I5(2)
subject to x — z =0,

. where I is an indication function of the set S = {7 | 1’z = 1 and z > 0}

« Z-subproblem is a projection onto S

* can be solved by 1d root finding (read: really really fast)

Generic problem can be specified directly

minimize f(x) + g(2)
subject to Mx — z = c,
solver = GeNIOS.GenericSolver(

f, grad_f!, Hf,
g, prox_g!,

I, zeros(n)

)

res solve!(solver)

We saw four ‘equivalent’ ways to solve:

We saw four ‘equivalent’ ways to solve:

* Solve the original QP

We saw four ‘equivalent’ ways to solve:

* Solve the original QP

* Solve the original QP with fast operators (multiple dispatch!)

We saw four ‘equivalent’ ways to solve:

* Solve the original QP
* Solve the original QP with fast operators (multiple dispatch!)

* Solve the reformulated, equivalent QP

We saw four ‘equivalent’ ways to solve:

* Solve the original QP
* Solve the original QP with fast operators (multiple dispatch!)
* Solve the reformulated, equivalent QP

* Solve the equivalent convex problem (not a QP)

We saw four ‘equivalent’ ways to solve:

* Solve the original QP
* Solve the original QP with fast operators (multiple dispatch!)
* Solve the reformulated, equivalent QP

* Solve the equivalent convex problem (not a QP)

« How do they compare?

In short: the more structure used, the better

And Julia lets us avoid error-prone reformulations

3

10 F
n QO
102 3
- &
94
v
v 10 F
E C
+— %
Q
% 1005‘
n - &
'
)
L 107t 3
—@— GeNIOS (eq gp)
e O— GeNIOS (full qp)
10 ~ —— GeNIOS (cust ops)
- —fe— GeNIOS (GenericSolver)
' | 1 1
10° 10" 10°

Problem size n

Thank you! Questions?

e Code & documentation:

https://github.com/tjdiamandis/GeNIOS. |l

 Relevant theory paper:

Frangella, Z., Zhao, S., Diamandis, T., Stellato, B., & Udell, M. (2023). On the (linear)
convergence of Generalized Newton Inexact ADMM. arXiv preprint arXiv:2302.03863.

 Plan to expose more of the interface in JuMP, extend to more sets

 Email: tdiamand@mit.edu (or open an issue on GitHub)

https://github.com/tjdiamandis/GeNIOS.jl
mailto:tdiamand@mit.edu

ADMM is a popular first-order method for
constrained optimization

ADMM is a popular first-order method for
constrained optimization

* Core idea: split original problem (difficult) into 2+ easy problems

 Repeatedly solve these problems & push solns together

ADMM is a popular first-order method for
constrained optimization

* Core idea: split original problem (difficult) into 2+ easy problems

 Repeatedly solve these problems & push solns together

® \ery effective for large-scale, data-driven opt problems

Distributed optimization and statistical learning via the alternating direction

method of multipliers
S Boyd, N Parikh, E Chu, B Peleato... - ... and Trends® in ..., 2011 - nowpublishers.com

... review, we argue that the alternating direction method of multipliers is well suited to
distributed convex optimization, and in particular to large-scale problems arising in statistics, ...

W Save Y9 Cite Cited by 20291 Related articles All 43 versions 99

We use x and z to “decouple” subproblems

and then solve these subproblems until convergence...

o*+1 = argmin (f(2) + (p/2)[| Mz — 2% — ¢+ u|}3)

I

2**t! = argmin (g(2) + (p/2)||Mz" " — 2 — c+ ukH%)

<

wFtl = 4 MRt — R e

We use x and z to “decouple” subproblems

and then solve these subproblems until convergence...

o*+1 = argmin (f(2) + (p/2)[| Mz — 2% — ¢+ u|}3)

I

2**t! = argmin (g(2) + (p/2)||Mz" " — 2 — c+ ukH%)

<

wFtl = 4 MRt — R e

* But solving the x-subproblem can still be difficult / slow

We use x and z to “decouple” subproblems

and then solve these subproblems until convergence...

o*+1 = argmin (f(2) + (p/2)[| Mz — 2% — ¢+ u|}3)

I

2Pt — argmin (9(2) + (p/2)| Mzt — 2z —c+ Uk”%)

<

wFtl = 4 MRt — R e

* But solving the x-subproblem can still be difficult / slow

* (Generally have to run an algorithm like L-BFGS at each iteration

We use x and z to “decouple” subproblems

and then solve these subproblems until convergence...

o*+1 = argmin (f(2) + (p/2)[| Mz — 2% — ¢+ u|}3)

I

2Pt — argmin (9(2) + (p/2)| Mzt — 2z —c+ Uk”%)

<

wFtl = 4 MRt — R e

* But solving the x-subproblem can still be difficult / slow

* (Generally have to run an algorithm like L-BFGS at each iteration

» A (perhaps silly?) idea: replace f(x) with an easy approximation

In fact, we can get quite sloppy...

(Subject to a condition on subproblem errors)

In fact, we can get quite sloppy...

(Subject to a condition on subproblem errors)

» |dea 1: replace f(x) with the second order Taylor expansion around xK

 => The x subproblem is just a linear system solve (!)

» => Only require function, gradient, and Hessian-vector-product for f (!)

 Makes interface very easy (& can leverage auto diff)

In fact, we can get quite sloppy...

(Subject to a condition on subproblem errors)

» |dea 1: replace f(x) with the second order Taylor expansion around xK

 => The x subproblem is just a linear system solve (!)

» => Only require function, gradient, and Hessian-vector-product for f (!)

 Makes interface very easy (& can leverage auto diff)

* |dea 2: solve this linear system inexactly

* We solve with CG method, decreasing the tolerance at each iteration

What about the z-subproblem?

» Often can put the hard/time-consuming parts of the problem in f

» But theory tells us we can solve z-subproblem inexactly too!

e \We won’t discuss here

* But interesting future directions...

