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• Most optimization problems have a lot of problem structure

• Many solvers force problems into a standard conic form

• Num variables : solve time can increase 2-3 orders of magnituden → 4n

• Harder to take advantage of problem data structure in this form

• Most optimization problems have a lot of problem structure
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We’d prefer to solve this
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GeNIOS.jl solves convex problems…

Quadratic Programs

Conic Programs

Machine Learning Problems

f(x), ∇f(x), v ↦ ∇̂2f(x)v g(z), ̂proxg/ρ(z)
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…using inexact ADMM

• ADMM involves solving two subproblems at each iteration

• We approximate these ADMM subproblems

• 2nd order approximation to 1st subproblem  linear system solve⟹

• Only need function, gradient, HVP (auto-diff is useful here)

• Approximate prox, , operator for 2nd subproblemaproxg(v)

• Then we inexactly solve these approximate subproblems



• Can try solving QP with/without inexact subproblem solves

Back to robust (Huber) regression
Quadratic program formulation has ~5x the variables!

Huber robust regression Equivalent quadratic program



MLSolver only needs loss & regularization



MLSolver only needs loss & regularization

• Supply conjugate -> can use duality gap convergence criterion
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QPSolver just needs problem data mats/vecs
(Can be supplied through JuMP)

Or use JuMP



MLSolver gives 35x-60x speedup



Sparsification slows mat-vec-products
(explains wider gap bt linsys & full solve) 

Dense block in sparse matrix = bad!



Sparsification slows mat-vec-products
(explains wider gap bt linsys & full solve) 

Dense block in sparse matrix = bad!

What about custom matrix type here?



Sparsification slows mat-vec-products
(explains wider gap bt linsys & full solve) 

Dense block in sparse matrix = bad!

What about custom matrix type here?
Sounds like a lot of work…
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Markowitz Portfolio Optimization
i.e., maximize risk-adjusted return of a long-only portfolio

• Covariance is diagonal + low rank:  where ,   Σ = D + FFT F ∈ Rn×k k ≪ n

• This is a quadratic program:



How can we take advantage of structure?
Traditional method: solve equivalent QP with n+k variables

• An equivalent QP w new variable :


• Pro: much faster solve


• Con: burden on user to do reformulation (can be very complex in other cases!)

y ∈ Rk
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Julia way: multiple dispatch
We can create fast mat-vec-products for constraint & obj matrices

• But the solver allows us to solve an even more interesting formulation…
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We don’t even need to use a QP solver!
projection onto the simplex is quite fast itself

• Equivalent convex (non-QP) problem:

• where  is an indication function of the set IS S = {z ∣ 1Tz = 1 and z ≥ 0}

• Z-subproblem is a projection onto  S

• can be solved by 1d root finding (read: really really fast)



Generic problem can be specified directly
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We saw four ‘equivalent’ ways to solve:
• Solve the original QP

• Solve the original QP with fast operators (multiple dispatch!)

• Solve the reformulated, equivalent QP

• Solve the equivalent convex problem (not a QP)

• How do they compare?



In short: the more structure used, the better
And Julia lets us avoid error-prone reformulations



Thank you!  Questions?
• Code & documentation: 


https://github.com/tjdiamandis/GeNIOS.jl


• Relevant theory paper: 


Frangella, Z., Zhao, S., Diamandis, T., Stellato, B., & Udell, M. (2023). On the (linear) 
convergence of Generalized Newton Inexact ADMM. arXiv preprint arXiv:2302.03863.


• Plan to expose more of the interface in JuMP, extend to more sets 

• Email: tdiamand@mit.edu (or open an issue on GitHub)

https://github.com/tjdiamandis/GeNIOS.jl
mailto:tdiamand@mit.edu


Appendix



ADMM is a popular first-order method for 
constrained optimization



ADMM is a popular first-order method for 
constrained optimization

• Core idea: split original problem (difficult) into 2+ easy problems


• Repeatedly solve these problems & push solns together




ADMM is a popular first-order method for 
constrained optimization

• Core idea: split original problem (difficult) into 2+ easy problems


• Repeatedly solve these problems & push solns together


• Very effective for large-scale, data-driven opt problems
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We use x and z to “decouple” subproblems
and then solve these subproblems until convergence…

• But solving the x-subproblem can still be difficult / slow

• Generally have to run an algorithm like L-BFGS at each iteration

• A (perhaps silly?) idea: replace  with an easy approximationf(x)
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• => The x subproblem is just a linear system solve (!)


• => Only require function, gradient, and Hessian-vector-product for  (!)


• Makes interface very easy (& can leverage auto diff)
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• Idea 2: solve this linear system inexactly


• We solve with CG method, decreasing the tolerance at each iteration



What about the z-subproblem?

• Often can put the hard/time-consuming parts of the problem in   


• But theory tells us we can solve z-subproblem inexactly too!


• We won’t discuss here


• But interesting future directions…

f


