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Exploiting structure yields huge speedups

(More than simply using SparseArrays)

 Most optimization problems have a lot of problem structure

 Many solvers force problems into a standard conic form

« Num variables n — 4n: solve time can increase 2-3 orders of magnitude

 Harder to take advantage of problem data structure in this form



Example: robust (Huber) regression

Quadratic program formulation has ~5x the variables!
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Example: robust (Huber) regression

Quadratic program formulation has ~5x the variables!
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GeNIOS.jl solves convex problems...

(), Vfx), v V) ille(). prox, (2)

minimize  f(x) + g(z)

subject to Mxz — z = c,

minimize (1/2)ZI3TP£E 4 qTiE \ minimize ;f(a?x —b;) + (1/2)A2)|zl5 + A1 ]l2l2

subject to [ < Ax < u, subject to x — 2z =0

Machine Learning Problems

Quadratic Programs

minimize  (1/2)z" Pz + ¢’ z

subject to Axr —z=rc
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...using inexact ADMWM

« ADMM involves solving two subproblems at each iteration

* \We approximate these ADMM subproblems

e 2nd order approximation to 1st subproblem — linear system solve

* Only need function, gradient, HVP (auto-diff is useful here)

. Approximate prox, aproxg(v), operator for 2nd subproblem

 Then we Inexactly solve these approximate subproblems



Back to robust (Huber) regression

Quadratic program formulation has ~5x the variables!

c e T T
minimize 3, " (alz — b;) + A1]z|1, minimize 77 r + 217 (s + 1) + A1g
subject to Arxr —r—s+t=2=
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Huber robust regression Equivalent quadratic program

* Can try solving QP with/without inexact subproblem solves



MLSolver only needs loss & regularization
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solver = GeNIOS.MLSolver(f, A1, A2, A, b)
res = solve!(solver; options=GeNIOS.SolverOptions(use_dual_gap=false))




MLSolver only needs loss & regularization

minimize Zﬁ(a?m —b;) + Ailz|ls + (1/2) 2]z,
i=1

* Supply conjugate -> can use duality gap convergence criterion

f(x) abs (x) | 0.5%x"2 abs (x) 0.5
Al = A

A2 = 0.0
solver = GeNIOS.MLSolver(f, A1, A2, A, b)
res = solve!(solver; options=GeNIOS.SolverOptions(use_dual_gap=false))




QPSolver just needs problem data mats/vecs
(Can be supplied through JuMP)

minimize (1/2)z! Pz + ¢’z
subject to [ < Ax < u,

solver = GeNIOS.QPSolver(P, q, A, 1, u)

res solve!(solver)



QPSolver just needs problem data mats/vecs
(Can be supplied through JuMP)

minimize (1/2)z! Pz + ¢’z
subject to [ < Ax < u,

solver

Ires



MLSolver gives 35x-60x speedup
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Sparsification slows mat-vec-products

(explains wider gap bt linsys & full solve)

Dense block in sparse matrix = bad! |

What about custom matrix type here?
Sounds like a lot of work...

\ \
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Markowitz Portfolio Optimization

l.e., maximize risk-adjusted return of a long-only portfolio

minimize —uplx + (v/2)z! Xo
subject to 11z =1
x > 0,

. Covariance is diagonal + low rank: >~ = D + FF! where F € R™X k < n

* This is a quadratic program:

minimize (1/2)a’ Px 4 ¢’z

subject to [ < Az < u,



How can we take advantage of structure?

Traditional method: solve equivalent QP with n+k variables

* An equivalent QP w new variable y & R*:

minimize vzl Dz +yyly — plx
subject to y = Flz
112z =1

x > 0.

e Pro: much faster solve

 Con: burden on user to do reformulation (can be very complex in other cases!)



Julia way: multiple dispatch

We can create fast mat-vec-products for constraint & obj matrices

LinearMaps

F lm = LinearMap(F)
P = y+(F_lm«F_lm' + Diagonal(d))

M = vcat(LinearMap(I, n), ones(1, n))

solver = GeNIOS.QPSolver(P, g, M, 1, u; check dims=false);
res = solve!(solver; options=GeNIOS.SolverOptions(eps_abs=1e-6));




Julia way: multiple dispatch

We can create fast mat-vec-products for constraint & obj matrices

LinearMaps

F lm = LinearMap(F)
P = y+(F_lm«F_lm' + Diagonal(d))

M = vcat(LinearMap(I, n), ones(1, n))

solver = GeNIOS.QPSolver(P, g, M, 1, u; check dims=false);
res = solve!(solver; options=GeNIOS.SolverOptions(eps_abs=1e-6));

* But the solver allows us to solve an even more interesting formulation...
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We don’t even need to use a QP solver!

projection onto the simplex is quite fast itself

e Equivalent convex (non-QP) problem:

minimize —plxz + (v/2)x! X + I5(2)
subject to x — z =0,

. where I is an indication function of the set S = {7 | 1’z = 1 and z > 0}

« Z-subproblem is a projection onto S

* can be solved by 1d root finding (read: really really fast)



Generic problem can be specified directly

minimize  f(x) + g(2)
subject to Mx — z = c,
solver = GeNIOS.GenericSolver(

f, grad_f!, Hf,
g, prox_g!,

I, zeros(n)

)

res solve!(solver)
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We saw four ‘equivalent’ ways to solve:

* Solve the original QP
* Solve the original QP with fast operators (multiple dispatch!)
* Solve the reformulated, equivalent QP

* Solve the equivalent convex problem (not a QP)

« How do they compare?



In short: the more structure used, the better

And Julia lets us avoid error-prone reformulations
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Thank you! Questions?

e Code & documentation:

https://github.com/tjdiamandis/GeNIOS. |l

 Relevant theory paper:

Frangella, Z., Zhao, S., Diamandis, T., Stellato, B., & Udell, M. (2023). On the (linear)
convergence of Generalized Newton Inexact ADMM. arXiv preprint arXiv:2302.03863.

 Plan to expose more of the interface in JuMP, extend to more sets

 Email: tdiamand@mit.edu (or open an issue on GitHub)



https://github.com/tjdiamandis/GeNIOS.jl
mailto:tdiamand@mit.edu
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ADMM is a popular first-order method for
constrained optimization

* Core idea: split original problem (difficult) into 2+ easy problems

 Repeatedly solve these problems & push solns together

® \ery effective for large-scale, data-driven opt problems

Distributed optimization and statistical learning via the alternating direction

method of multipliers
S Boyd, N Parikh, E Chu, B Peleato... - ... and Trends® in ..., 2011 - nowpublishers.com

... review, we argue that the alternating direction method of multipliers is well suited to
distributed convex optimization, and in particular to large-scale problems arising in statistics, ...

W Save Y9 Cite Cited by 20291 Related articles All 43 versions 99
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We use x and z to “decouple” subproblems

and then solve these subproblems until convergence...

o*+1 = argmin (f(2) + (p/2)[| Mz — 2% — ¢+ u|}3)

I

2Pt — argmin (9(2) + (p/2)| Mzt — 2z —c+ Uk”%)

<

wFtl = 4 MRt — R e

* But solving the x-subproblem can still be difficult / slow

* (Generally have to run an algorithm like L-BFGS at each iteration

» A (perhaps silly?) idea: replace f(x) with an easy approximation
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In fact, we can get quite sloppy...

(Subject to a condition on subproblem errors)

» |dea 1: replace f(x) with the second order Taylor expansion around xK

 => The x subproblem is just a linear system solve (!)

» => Only require function, gradient, and Hessian-vector-product for f (!)

 Makes interface very easy (& can leverage auto diff)

* |dea 2: solve this linear system inexactly

* We solve with CG method, decreasing the tolerance at each iteration



What about the z-subproblem?

» Often can put the hard/time-consuming parts of the problem in f

» But theory tells us we can solve z-subproblem inexactly too!

e \We won’t discuss here

* But interesting future directions...



