Exploiting problem structure in optimization with GeNIOS.jl
 (GEneralized Newtown Inexact Operator Splitting solver)

Theo Diamandis, Zachary Frangella, Bartolomeo Stellato, Madeleine Udell
MIT JuliaLab • Juliacon 2023

Exploiting structure yields huge speedups

 (More than simply using SparseArrays)- Most optimization problems have a lot of problem structure

Exploiting structure yields huge speedups (More than simply using SparseArrays)

- Most optimization problems have a lot of problem structure

Huber fitting (as a quadratic program)

Exploiting structure yields huge speedups (More than simply using SparseArrays)

- Most optimization problems have a lot of problem structure

Huber fitting (as a quadratic program)

Exploiting structure yields huge speedups

 (More than simply using SparseArrays)- Most optimization problems have a lot of problem structure

Exploiting structure yields huge speedups (More than simply using SparseArrays)

- Most optimization problems have a lot of problem structure
- Many solvers force problems into a standard conic form
- Num variables $n \rightarrow 4 n$: solve time can increase 2-3 orders of magnitude

Exploiting structure yields huge speedups (More than simply using SparseArrays)

- Most optimization problems have a lot of problem structure
- Many solvers force problems into a standard conic form
- Num variables $n \rightarrow 4 n$: solve time can increase 2-3 orders of magnitude
- Harder to take advantage of problem data structure in this form

Example: robust (Huber) regression

Quadratic program formulation has $\sim 5 x$ the variables!

minimize $\quad \sum_{i=1}^{N} \ell^{\text {hub }}\left(a_{i}^{T} x-b_{i}\right)+\lambda_{1}\|x\|_{1}$,

$$
\ell^{\text {hub }}(w)= \begin{cases}w^{2} & |w| \leq 1 \\ 2|w|-1 & |w|>1\end{cases}
$$

Huber robust regression

$$
\begin{array}{ll}
\operatorname{minimize} & r^{T} r+21^{T}(s+t)+\lambda_{1} q \\
\text { subject to } & A x-r-s+t=b \\
& -q \leq x \leq q \\
& 0 \leq s, t
\end{array}
$$

Equivalent quadratic program

Example: robust (Huber) regression

Quadratic program formulation has $\sim 5 x$ the variables!

$\operatorname{minimize} \quad \sum_{i=1}^{N} \ell^{\text {hub }}\left(a_{i}^{T} x-b_{i}\right)+\lambda_{1}\|x\|_{1}$,

$$
\ell^{\text {hub }}(w)= \begin{cases}w^{2} & |w| \leq 1 \\ 2|w|-1 & |w|>1\end{cases}
$$

Huber robust regression
minimize $\quad r^{T} r+21^{T}(s+t)+\lambda_{1} q$
subject to $A x-r-s+t=b$

Example: robust (Huber) regression

Quadratic program formulation has $\sim 5 x$ the variables!

We'd prefer to solve this
$\operatorname{minimize} \quad \sum_{i=1}^{N} \ell^{\text {hub }}\left(a_{i}^{T} x-b_{i}\right)+\lambda_{1}\|x\|_{1}$,

$$
\ell^{\text {hub }}(w)= \begin{cases}w^{2} & |w| \leq 1 \\ 2|w|-1 & |w|>1\end{cases}
$$

Huber robust regression
minimize $\quad r^{T} r+21^{T}(s+t)+\lambda_{1} q$
subject to $A x-r-s+t=b$

GeNIOS.jl solves convex problems...

$$
\begin{array}{ll}
\text { minimize } & f(x)+g(z) \\
\text { subject to } & M x-z=c,
\end{array}
$$

GeNIOS.jl solves convex problems...

$$
\begin{array}{ll}
f(x), \nabla f(x), v \mapsto \hat{\nabla}^{2} f(x) v \\
\text { minimize } & f(x)+g(z) \\
\text { subject to } & M x-z=c,
\end{array}
$$

GeNIOS.jl solves convex problems...

$$
\begin{array}{ll}
\quad f(x), \nabla f(x), v \mapsto \hat{\nabla}^{2} f(x) v \quad \mathrm{~g}(z), \text { prox }_{g \rho \rho}(z) \\
\text { minimize } & f(x)+g(z) \\
\text { subject to } & M x-z=c,
\end{array}
$$

GeNIOS.jl solves convex problems...

$$
\begin{array}{ll}
\qquad f(x), \nabla f(x), v \mapsto \hat{\nabla}^{2} f(x) v \quad g(z), \text { prox }_{g l \rho}(z) \\
\text { minimize } \quad f(x)+g(z) \\
\text { subject to } \quad M x-z=c,
\end{array}
$$

minimize $\quad(1 / 2) x^{T} P x+q^{T} x$
subject to $l \leq A x \leq u$,
Quadratic Programs

GeNIOS.jl solves convex problems...

$$
\begin{array}{ll}
f(x), \nabla f(x), v \mapsto \hat{\nabla}^{2} f(x) v \quad g(z), \text { prox }_{g / \rho}(z) \\
\text { minimize } & f(x)+g(z) \\
\text { subject to } & M x-z=c,
\end{array}
$$

minimize $\quad(1 / 2) x^{T} P x+q^{T} x$
subject to $l \leq A x \leq u$,
Quadratic Programs

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x \\
\text { subject to } & A x-z=c \quad \text { Conic Programs } \\
& z \in \mathcal{K}, \quad
\end{array}
$$

GeNIOS.jl solves convex problems...

minimize $\quad(1 / 2) x^{T} P x+q^{T} x$
subject to $l \leq A x \leq u$,
Quadratic Programs

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x \\
\text { subject to } & A x-z=c \quad \text { Conic Programs } \\
& z \in \mathcal{K}, \quad
\end{array}
$$

...using inexact ADMM

....using inexact ADMM

- ADMM involves solving two subproblems at each iteration

....using inexact ADMM

- ADMM involves solving two subproblems at each iteration
- We approximate these ADMM subproblems

....using inexact ADMM

- ADMM involves solving two subproblems at each iteration
- We approximate these ADMM subproblems
- 2nd order approximation to 1 st subproblem \Longrightarrow linear system solve

....using inexact ADMM

- ADMM involves solving two subproblems at each iteration
- We approximate these ADMM subproblems
- 2nd order approximation to 1 st subproblem \Longrightarrow linear system solve
- Only need function, gradient, HVP (auto-diff is useful here)

....using inexact ADMM

- ADMM involves solving two subproblems at each iteration
- We approximate these ADMM subproblems
- 2nd order approximation to 1 st subproblem \Longrightarrow linear system solve
- Only need function, gradient, HVP (auto-diff is useful here)
- Approximate prox, $\operatorname{aprox}_{g}(v)$, operator for 2 nd subproblem

....using inexact ADMM

- ADMM involves solving two subproblems at each iteration
- We approximate these ADMM subproblems
- 2nd order approximation to 1 st subproblem \Longrightarrow linear system solve
- Only need function, gradient, HVP (auto-diff is useful here)
- Approximate prox, $\operatorname{aprox}_{g}(v)$, operator for 2 nd subproblem
- Then we inexactly solve these approximate subproblems

Back to robust (Huber) regression

Quadratic program formulation has $\sim 5 x$ the variables!

$\operatorname{minimize} \quad \sum_{i=1}^{N} \ell^{\mathrm{hub}}\left(a_{i}^{T} x-b_{i}\right)+\lambda_{1}\|x\|_{1}$,

$$
\ell^{\text {hub }}(w)= \begin{cases}w^{2} & |w| \leq 1 \\ 2|w|-1 & |w|>1\end{cases}
$$

Huber robust regression

$$
\begin{array}{ll}
\operatorname{minimize} & r^{T} r+21^{T}(s+t)+\lambda_{1} q \\
\text { subject to } & A x-r-s+t=b \\
& -q \leq x \leq q \\
& 0 \leq s, t
\end{array}
$$

- Can try solving QP with/without inexact subproblem solves

MLSolver only needs loss \& regularization

$$
\operatorname{minimize} \quad \sum_{i=1}^{m} \ell\left(a_{i}^{T} x-b_{i}\right)+\lambda_{1}\|x\|_{1}+(1 / 2) \lambda_{2}\|x\|_{2}^{2}
$$

```
## Huber problem: min \sum fhub (aid}\mp@subsup{}{}{\top}x-\mp@subsup{b}{i}{})+\lambda||x||
f(x) = abs(x) <= 1 ? 0.5*x^2 : abs(x) - 0.5
\lambda1 = \lambda
\lambda2 = 0.0
solver = GeNIOS.MLSolver(f, \lambda1, \lambda2, A, b)
res = solve!(solver; options=GeNIOS.SolverOptions(use_dual_gap=false))
```


MLSolver only needs loss \& regularization

$$
\operatorname{minimize} \quad \sum_{i=1}^{m} \ell\left(a_{i}^{T} x-b_{i}\right)+\lambda_{1}\|x\|_{1}+(1 / 2) \lambda_{2}\|x\|_{2}^{2}
$$

- Supply conjugate -> can use duality gap convergence criterion

```
## Huber problem: min \sum fhub (aid
f(x) = abs(x) <= 1 ? 0.5*x^2 : abs(x) - 0.5
\lambda1 = \lambda
\lambda2 = 0.0
solver = GeNIOS.MLSolver(f, \lambda1, \lambda2, A, b)
res = solve!(solver; options=GeNIOS.SolverOptions(use_dual_gap=false))
```


QPSolver just needs problem data mats/vecs

(Can be supplied through JuMP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x \\
\text { subject to } & l \leq A x \leq u
\end{array}
$$

```
solver = GeNIOS.QPSolver(P, q, A, l, u)
res = solve!(solver)
```


QPSolver just needs problem data mats/vecs

(Can be supplied through JuMP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x \\
\text { subject to } & l \leq A x \leq u
\end{array}
$$

```
solver = GeNIOS USE JuMP .., q, A, l, u)
```


MLSolver gives 35x-60x speedup

Sparsification slows mat-vec-products

(explains wider gap bt linsys \& full solve)

Sparsification slows mat-vec-products

 (explains wider gap bt linsys \& full solve)

Sparsification slows mat-vec-products

 (explains wider gap bt linsys \& full solve)

Markowitz Portfolio Optimization

i.e., maximize risk-adjusted return of a long-only portfolio

$$
\begin{array}{ll}
\operatorname{minimize} & -\mu^{T} x+(\gamma / 2) x^{T} \Sigma x \\
\text { subject to } & \mathbf{1}^{T} x=1 \\
& x \geq 0
\end{array}
$$

Markowitz Portfolio Optimization

i.e., maximize risk-adjusted return of a long-only portfolio

$$
\begin{array}{ll}
\operatorname{minimize} & -\mu^{T} x+(\gamma / 2) x^{T} \Sigma x \\
\text { subject to } & \mathbf{1}^{T} x=1 \\
& x \geq 0
\end{array}
$$

- Covariance is diagonal + low rank: $\Sigma=D+F F^{T}$ where $F \in \mathbf{R}^{n \times k}, k \ll n$

Markowitz Portfolio Optimization

i.e., maximize risk-adjusted return of a long-only portfolio

$$
\begin{array}{ll}
\operatorname{minimize} & -\mu^{T} x+(\gamma / 2) x^{T} \Sigma x \\
\text { subject to } & \mathbf{1}^{T} x=1 \\
& x \geq 0
\end{array}
$$

- Covariance is diagonal + low rank: $\Sigma=D+F F^{T}$ where $F \in \mathbf{R}^{n \times k}, k \ll n$
- This is a quadratic program:

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x \\
\text { subject to } & l \leq A x \leq u
\end{array}
$$

How can we take advantage of structure?

Traditional method: solve equivalent QP with $\mathbf{n + k}$ variables

- An equivalent QP w new variable $y \in \mathbf{R}^{k}$:

$$
\begin{array}{ll}
\operatorname{minimize} & \gamma x^{T} D x+\gamma y^{T} y-\mu^{T} x \\
\text { subject to } & y=F^{T} x \\
& \mathbf{1}^{T} x=1 \\
& x \geq 0
\end{array}
$$

- Pro: much faster solve
- Con: burden on user to do reformulation (can be very complex in other cases!)

Julia way: multiple dispatch

We can create fast mat-vec-products for constraint \& obj matrices

```
using LinearMaps
## P = ү*(F*F' + Diagonal(d))
F_lm = LinearMap(F)
P= Y}*(F_lm*F_lm' + Diagonal(d)
## M = vcat(I, ones(1, n))
M = vcat(LinearMap(I, n), ones(1, n))
solver = GeNIOS.QPSolver(P, q, M, l, u; check_dims=false);
res = solve!(solver; options=GeNIOS.SolverOptions(eps_abs=1e-6));
```


Julia way: multiple dispatch

We can create fast mat-vec-products for constraint \& obj matrices

```
using LinearMaps
## P = ү*(F*F' + Diagonal(d))
F_lm = LinearMap(F)
P= Y*(F_lm*F_lm' + Diagonal(d))
## M = vcat(I, ones(1, n))
M = vcat(LinearMap(I, n), ones(1, n))
solver = GeNIOS.QPSolver(P, q, M, l, u; check_dims=false);
res = solve!(solver; options=GeNIOS.SolverOptions(eps_abs=1e-6));
```

- But the solver allows us to solve an even more interesting formulation...

We don't even need to use a QP solver!

 projection onto the simplex is quite fast itself
We don't even need to use a QP solver!

 projection onto the simplex is quite fast itself- Equivalent convex (non-QP) problem:

$$
\begin{array}{ll}
\operatorname{minimize} & -\mu^{T} x+(\gamma / 2) x^{T} \Sigma x+I_{S}(z) \\
\text { subject to } & x-z=0
\end{array}
$$

- where I_{S} is an indication function of the set $S=\left\{z \mid \mathbf{1}^{T} z=1\right.$ and $\left.z \geq 0\right\}$

We don't even need to use a QP solver! projection onto the simplex is quite fast itself

- Equivalent convex (non-QP) problem:

$$
\begin{array}{ll}
\text { minimize } & -\mu^{T} x+(\gamma / 2) x^{T} \Sigma x+I_{S}(z) \\
\text { subject to } & x-z=0
\end{array}
$$

- where I_{S} is an indication function of the set $S=\left\{z \mid \mathbf{1}^{T} z=1\right.$ and $\left.z \geq 0\right\}$
- Z-subproblem is a projection onto S

We don't even need to use a QP solver! projection onto the simplex is quite fast itself

- Equivalent convex (non-QP) problem:

$$
\begin{array}{ll}
\operatorname{minimize} & -\mu^{T} x+(\gamma / 2) x^{T} \Sigma x+I_{S}(z) \\
\text { subject to } & x-z=0
\end{array}
$$

- where I_{S} is an indication function of the set $S=\left\{z \mid \mathbf{1}^{T} z=1\right.$ and $\left.z \geq 0\right\}$
- Z-subproblem is a projection onto S
- can be solved by 1d root finding (read: really really fast)

Generic problem can be specified directly

$$
\begin{array}{ll}
\text { minimize } & f(x)+g(z) \\
\text { subject to } & M x-z=c,
\end{array}
$$

```
solver = GeNIOS.GenericSolver(
    f, grad_f!, Hf,
    g, prox_g!,
    I, zeros(n)
)
res = solve!(solver)
# f(x)
    # g(z)
    # M, c: Mx - z = c
```


We saw four 'equivalent’ ways to solve:

We saw four 'equivalent’ ways to solve:

- Solve the original QP

We saw four 'equivalent' ways to solve:

- Solve the original QP
- Solve the original QP with fast operators (multiple dispatch!)

We saw four 'equivalent' ways to solve:

- Solve the original QP
- Solve the original QP with fast operators (multiple dispatch!)
- Solve the reformulated, equivalent QP

We saw four 'equivalent' ways to solve:

- Solve the original QP
- Solve the original QP with fast operators (multiple dispatch!)
- Solve the reformulated, equivalent QP
- Solve the equivalent convex problem (not a QP)

We saw four 'equivalent' ways to solve:

- Solve the original QP
- Solve the original QP with fast operators (multiple dispatch!)
- Solve the reformulated, equivalent QP
- Solve the equivalent convex problem (not a QP)
- How do they compare?

In short: the more structure used, the better

And Julia lets us avoid error-prone reformulations

Thank you! Questions?

- Code \& documentation:
https://github.com/tjdiamandis/GeNIOS.jI
- Relevant theory paper:

Frangella, Z., Zhao, S., Diamandis, T., Stellato, B., \& Udell, M. (2023). On the (linear) convergence of Generalized Newton Inexact ADMM. arXiv preprint arXiv:2302.03863.

- Plan to expose more of the interface in JuMP, extend to more sets
- Email: tdiamand@mit.edu (or open an issue on GitHub)

Appendix

ADMM is a popular first-order method for constrained optimization

ADMM is a popular first-order method for constrained optimization

- Core idea: split original problem (difficult) into 2+ easy problems
- Repeatedly solve these problems \& push solns together

ADMM is a popular first-order method for constrained optimization

- Core idea: split original problem (difficult) into 2+ easy problems
- Repeatedly solve these problems \& push solns together
- Very effective for large-scale, data-driven opt problems method of multipliers
SBoyd, N Parikh, EChu, B Peleato ... - ... and Trends® in ..., 2011 - nowpublishers.com

We use x and z to "decouple" subproblems

 and then solve these subproblems until convergence...$$
\begin{aligned}
x^{k+1} & =\underset{x}{\operatorname{argmin}}\left(f(x)+(\rho / 2)\left\|M x-z^{k}-c+u^{k}\right\|_{2}^{2}\right) \\
z^{k+1} & =\underset{z}{\operatorname{argmin}}\left(g(z)+(\rho / 2)\left\|M x^{k+1}-z-c+u^{k}\right\|_{2}^{2}\right) \\
u^{k+1} & =u^{k}+M x^{k+1}-z^{k+1}-c .
\end{aligned}
$$

We use x and z to "decouple" subproblems

 and then solve these subproblems until convergence...$$
\begin{aligned}
x^{k+1} & =\underset{x}{\operatorname{argmin}}\left(f(x)+(\rho / 2)\left\|M x-z^{k}-c+u^{k}\right\|_{2}^{2}\right) \\
z^{k+1} & =\underset{z}{\operatorname{argmin}}\left(g(z)+(\rho / 2)\left\|M x^{k+1}-z-c+u^{k}\right\|_{2}^{2}\right) \\
u^{k+1} & =u^{k}+M x^{k+1}-z^{k+1}-c .
\end{aligned}
$$

- But solving the x -subproblem can still be difficult / slow

We use x and z to "decouple" subproblems

 and then solve these subproblems until convergence...$$
\begin{aligned}
x^{k+1} & =\underset{x}{\operatorname{argmin}}\left(f(x)+(\rho / 2)\left\|M x-z^{k}-c+u^{k}\right\|_{2}^{2}\right) \\
z^{k+1} & =\underset{z}{\operatorname{argmin}}\left(g(z)+(\rho / 2)\left\|M x^{k+1}-z-c+u^{k}\right\|_{2}^{2}\right) \\
u^{k+1} & =u^{k}+M x^{k+1}-z^{k+1}-c .
\end{aligned}
$$

- But solving the x-subproblem can still be difficult / slow
- Generally have to run an algorithm like L-BFGS at each iteration

We use x and z to "decouple" subproblems

 and then solve these subproblems until convergence...$$
\begin{aligned}
x^{k+1} & =\underset{x}{\operatorname{argmin}}\left(f(x)+(\rho / 2)\left\|M x-z^{k}-c+u^{k}\right\|_{2}^{2}\right) \\
z^{k+1} & =\underset{z}{\operatorname{argmin}}\left(g(z)+(\rho / 2)\left\|M x^{k+1}-z-c+u^{k}\right\|_{2}^{2}\right) \\
u^{k+1} & =u^{k}+M x^{k+1}-z^{k+1}-c .
\end{aligned}
$$

- But solving the x-subproblem can still be difficult / slow
- Generally have to run an algorithm like L-BFGS at each iteration
- A (perhaps silly?) idea: replace $f(x)$ with an easy approximation

In fact, we can get quite sloppy...

(Subject to a condition on subproblem errors)

In fact, we can get quite sloppy...

(Subject to a condition on subproblem errors)

- Idea 1: replace $f(x)$ with the second order Taylor expansion around x^{k}
- => The x subproblem is just a linear system solve (!)
- => Only require function, gradient, and Hessian-vector-product for $f(!)$
- Makes interface very easy (\& can leverage auto diff)

In fact, we can get quite sloppy...

(Subject to a condition on subproblem errors)

- Idea 1: replace $f(x)$ with the second order Taylor expansion around x^{k}
- => The x subproblem is just a linear system solve (!)
- => Only require function, gradient, and Hessian-vector-product for f (!)
- Makes interface very easy (\& can leverage auto diff)
- Idea 2: solve this linear system inexactly
- We solve with CG method, decreasing the tolerance at each iteration

What about the z-subproblem?

- Often can put the hard/time-consuming parts of the problem in f
- But theory tells us we can solve z-subproblem inexactly too!
- We won't discuss here
- But interesting future directions...

