
An Efficient Algorithm for Optimal Routing
Through Constant Function Market Makers

Theo Diamandis (MIT), Max Resnick (Rook), Tarun Chitra (Gauntlet), and
Guillermo Angeris (Bain Capital Crypto)

Financial Cryptography 2023

1

tl;dr: It’s all convex optimization

Routing (multi-DEX swaps, etc.) is a convex1 optimization problem,
so it can be very efficiently solved to verifiable global optimality.

This talk: the ‘very efficiently’ part

1when we ignore gas
2

tl;dr: It’s all convex optimization

Routing (multi-DEX swaps, etc.) is a convex1 optimization problem,
so it can be very efficiently solved to verifiable global optimality.

This talk: the ‘very efficiently’ part

1when we ignore gas
2

Outline

Background: Constant Function Market Makers

Formalizing Routing

When in Doubt, Take the Dual

Numerical Results

Wrap Up

Background: Constant Function Market Makers 3

Review: Constant Function Market Makers

I Most DEXs are implemented as constant function market makers (CFMMs)

I CFMMs are defined by their trading function ϕ : Rn
+ → R

I Maps reserves R ∈ Rn
+ to a real number

I Is concave and increasing

I Accepts trade ∆→ Λ if ϕ(R + γ∆− Λ) ≥ ϕ(R).

Background: Constant Function Market Makers 4

Review: Constant Function Market Makers

I Most DEXs are implemented as constant function market makers (CFMMs)

I CFMMs are defined by their trading function ϕ : Rn
+ → R

I Maps reserves R ∈ Rn
+ to a real number

I Is concave and increasing

I Accepts trade ∆→ Λ if ϕ(R + γ∆− Λ) ≥ ϕ(R).

Background: Constant Function Market Makers 4

Review: Constant Function Market Makers

I Most DEXs are implemented as constant function market makers (CFMMs)

I CFMMs are defined by their trading function ϕ : Rn
+ → R

I Maps reserves R ∈ Rn
+ to a real number

I Is concave and increasing

I Accepts trade ∆→ Λ if ϕ(R + γ∆− Λ) ≥ ϕ(R).

Background: Constant Function Market Makers 4

Review: Constant Function Market Makers

I Most DEXs are implemented as constant function market makers (CFMMs)

I CFMMs are defined by their trading function ϕ : Rn
+ → R

I Maps reserves R ∈ Rn
+ to a real number

I Is concave and increasing

I Accepts trade ∆→ Λ if ϕ(R + γ∆− Λ) ≥ ϕ(R).

Background: Constant Function Market Makers 4

Most DEXs are CFMMs

I Geometric mean trading function (Balancer, Uniswap, etc...):

ϕ(R) =

(
n∏

i=1

Rwi
i

)1/n

where wi are nonnegative weights that sum to 1.

I Curve:

ϕ(R) = 1TR − α
n∏

i=1

R−1
i

where α > 0.

Background: Constant Function Market Makers 5

Most DEXs are CFMMs

I Geometric mean trading function (Balancer, Uniswap, etc...):

ϕ(R) =

(
n∏

i=1

Rwi
i

)1/n

where wi are nonnegative weights that sum to 1.

I Curve:

ϕ(R) = 1TR − α
n∏

i=1

R−1
i

where α > 0.

Background: Constant Function Market Makers 5

Problem: fragmented liquidity

I Most CFMMs are swap pools (trade asset A for B)

I For n assets, can have ∼n2 swap pools

I If I want to trade ETH for DAI, there are many routes I can take:
– ETH→ DAI

– ETH→ USDC→ DAI

– ETH→ wBTC→ DAI

– ...

I Problem: How to split trade? Solution: build a router

Background: Constant Function Market Makers 6

Problem: fragmented liquidity

I Most CFMMs are swap pools (trade asset A for B)

I For n assets, can have ∼n2 swap pools

I If I want to trade ETH for DAI, there are many routes I can take:
– ETH→ DAI

– ETH→ USDC→ DAI

– ETH→ wBTC→ DAI

– ...

I Problem: How to split trade? Solution: build a router

Background: Constant Function Market Makers 6

Problem: fragmented liquidity

I Most CFMMs are swap pools (trade asset A for B)

I For n assets, can have ∼n2 swap pools

I If I want to trade ETH for DAI, there are many routes I can take:
– ETH→ DAI

– ETH→ USDC→ DAI

– ETH→ wBTC→ DAI

– ...

I Problem: How to split trade? Solution: build a router

Background: Constant Function Market Makers 6

Problem: fragmented liquidity

I Most CFMMs are swap pools (trade asset A for B)

I For n assets, can have ∼n2 swap pools

I If I want to trade ETH for DAI, there are many routes I can take:
– ETH→ DAI

– ETH→ USDC→ DAI

– ETH→ wBTC→ DAI

– ...

I Problem: How to split trade?

Solution: build a router

Background: Constant Function Market Makers 6

Problem: fragmented liquidity

I Most CFMMs are swap pools (trade asset A for B)

I For n assets, can have ∼n2 swap pools

I If I want to trade ETH for DAI, there are many routes I can take:
– ETH→ DAI

– ETH→ USDC→ DAI

– ETH→ wBTC→ DAI

– ...

I Problem: How to split trade? Solution: build a router

Background: Constant Function Market Makers 6

Outline

Background: Constant Function Market Makers

Formalizing Routing

When in Doubt, Take the Dual

Numerical Results

Wrap Up

Formalizing Routing 7

Networks of CFMMs

I Common representation: undirected graph with exchange rates

rDAI-USDC rETH-USDT

rDAI-ETH

rUSDC-USDT

DAI
ETH

USDC
USDT

I But how to handle three pools? Multiple CFMMs?

Formalizing Routing 8

Networks of CFMMs

I Common representation: undirected graph with exchange rates

rDAI-USDC rETH-USDT

rDAI-ETH

rUSDC-USDT

DAI
ETH

USDC
USDT

I But how to handle three pools? Multiple CFMMs?

Formalizing Routing 8

Networks of CFMMs

I The token-CFMM network is a hypergraph: edges can connect more than 2 vertices

CRV 3pool

UNI UNI

BAL40/60

DAI

ETH

USDC
USDT

Formalizing Routing 9

Networks of CFMMs

I The token-CFMM network is a hypergraph: edges can connect more than 2 vertices

CRV 3pool

BAL ETH60/DAI40

BAL USDC/ETH

UNI DAI/USDC

UNI ETH/USDT

DAI

ETH

USDC

USDT

I Good bookkeeping is essential!

Formalizing Routing 10

Networks of CFMMs

I Label the tokens 1, 2, . . . , n

I Label the CFMMs 1, 2, . . . ,m

I CFMM i has ni tokens, with local indices 1, . . . , ni

I Trade (∆i ,Λi) with CFMM i , where ∆i ,Λi ∈ Rni
+

I Trade accepted if ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri)

Formalizing Routing 11

Networks of CFMMs

I Label the tokens 1, 2, . . . , n

I Label the CFMMs 1, 2, . . . ,m

I CFMM i has ni tokens, with local indices 1, . . . , ni

I Trade (∆i ,Λi) with CFMM i , where ∆i ,Λi ∈ Rni
+

I Trade accepted if ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri)

Formalizing Routing 11

Networks of CFMMs

I Label the tokens 1, 2, . . . , n

I Label the CFMMs 1, 2, . . . ,m

I CFMM i has ni tokens, with local indices 1, . . . , ni

I Trade (∆i ,Λi) with CFMM i , where ∆i ,Λi ∈ Rni
+

I Trade accepted if ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri)

Formalizing Routing 11

Networks of CFMMs

I Label the tokens 1, 2, . . . , n

I Label the CFMMs 1, 2, . . . ,m

I CFMM i has ni tokens, with local indices 1, . . . , ni

I Trade (∆i ,Λi) with CFMM i , where ∆i ,Λi ∈ Rni
+

I Trade accepted if ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri)

Formalizing Routing 11

Networks of CFMMs

I Matrices Ai map token’s local index in CFMM i to global index, e.g., ,

Token Local Index Global Index
DAI 1 3
ETH 2 1

Ai ·
[
1
2

]
=


2
0
1
0
...



I The overall net trade with the network is

Ψ =
m∑
i=1

Ai (Λi −∆i)

Formalizing Routing 12

Networks of CFMMs

I Matrices Ai map token’s local index in CFMM i to global index, e.g., ,

Token Local Index Global Index
DAI 1 3
ETH 2 1

Ai ·
[
1
2

]
=


2
0
1
0
...


I The overall net trade with the network is

Ψ =
m∑
i=1

Ai (Λi −∆i)

Formalizing Routing 12

Simplifying the Model

I We ignore gas fees

I We don’t worry about transaction execution ordering

I We can return to these later...

Formalizing Routing 13

The Routing Problem

I We choose some utility function U(Ψ) of the net trade Ψ

I The optimal routing problem is then

maximize U(Ψ)
subject to Ψ =

∑m
i=1 Ai (Λi −∆i)

ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri), i = 1, . . . ,m
∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m.

Formalizing Routing 14

The Routing Problem

I We choose some utility function U(Ψ) of the net trade Ψ

I The optimal routing problem is then

maximize U(Ψ)
subject to Ψ =

∑m
i=1 Ai (Λi −∆i)

ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri), i = 1, . . . ,m
∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m.

Formalizing Routing 14

The Routing Problem

I We choose some utility function U(Ψ) of the net trade Ψ

I The optimal routing problem is then

maximize U(Ψ)
subject to Ψ =

∑m
i=1 Ai (Λi −∆i)

ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri), i = 1, . . . ,m
∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m.

Formalizing Routing 14

The Routing Problem

I We choose some utility function U(Ψ) of the net trade Ψ

I The optimal routing problem is then

maximize U(Ψ)
subject to Ψ =

∑m
i=1 Ai (Λi −∆i)

ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri), i = 1, . . . ,m
∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m.

I Each individual CFMM is defined by trading constraints

Formalizing Routing 14

U(Ψ) encodes what we want to do

I Utility function U gives our satisfaction with the net trade

I We can also use U to encode constraints

I Arbitrage: Find the most profitable nonnegative net trade

U(Ψ) = cTΨ− I(Ψ ≥ 0)

– The vector c is a positive price vector

– Indicator function I(Ψ ≥ 0) = 0 if Ψ ≥ 0 and +∞ otherwise

Formalizing Routing 15

U(Ψ) encodes what we want to do

I Utility function U gives our satisfaction with the net trade

I We can also use U to encode constraints

I Arbitrage: Find the most profitable nonnegative net trade

U(Ψ) = cTΨ− I(Ψ ≥ 0)

– The vector c is a positive price vector

– Indicator function I(Ψ ≥ 0) = 0 if Ψ ≥ 0 and +∞ otherwise

Formalizing Routing 15

Swaps: trade token i for j

I Goal: maximize output of token j given fixed input of token i

I Constraints: input exactly ∆i of token i and only get token j

U(Ψ) = Ψj − I(Ψ[n]\{i ,j} = 0, Ψi = −∆i)

I More generally, we can optimally purchase or liquidate a basket of tokens

I Capturing “arbitrage” opportunities as part of the swap

Formalizing Routing 16

Swaps: trade token i for j

I Goal: maximize output of token j given fixed input of token i

I Constraints: input exactly ∆i of token i and only get token j

U(Ψ) = Ψj − I(Ψ[n]\{i ,j} = 0, Ψi = −∆i)

I More generally, we can optimally purchase or liquidate a basket of tokens

I Capturing “arbitrage” opportunities as part of the swap

Formalizing Routing 16

Outline

Background: Constant Function Market Makers

Formalizing Routing

When in Doubt, Take the Dual

Numerical Results

Wrap Up

When in Doubt, Take the Dual 17

Duality provides an alternate view of the problem

I The primal problem: finding the optimal trades

I The dual problem: finding the optimal prices

I Idea: your utility function induces personal “shadow” prices (marginal utilities) at
which you value each token

I Given these prices, you can arbitrage each CFMM independently & in parallel

I Strong duality =⇒ dual problem has the same optimal value

I Strong duality =⇒ certificate of optimality (very cheap to check)

When in Doubt, Take the Dual 18

Duality provides an alternate view of the problem

I The primal problem: finding the optimal trades

I The dual problem: finding the optimal prices

I Idea: your utility function induces personal “shadow” prices (marginal utilities) at
which you value each token

I Given these prices, you can arbitrage each CFMM independently & in parallel

I Strong duality =⇒ dual problem has the same optimal value

I Strong duality =⇒ certificate of optimality (very cheap to check)

When in Doubt, Take the Dual 18

Duality provides an alternate view of the problem

I The primal problem: finding the optimal trades

I The dual problem: finding the optimal prices

I Idea: your utility function induces personal “shadow” prices (marginal utilities) at
which you value each token

I Given these prices, you can arbitrage each CFMM independently & in parallel

I Strong duality =⇒ dual problem has the same optimal value

I Strong duality =⇒ certificate of optimality (very cheap to check)

When in Doubt, Take the Dual 18

Duality provides an alternate view of the problem

I The primal problem: finding the optimal trades

I The dual problem: finding the optimal prices

I Idea: your utility function induces personal “shadow” prices (marginal utilities) at
which you value each token

I Given these prices, you can arbitrage each CFMM independently & in parallel

I Strong duality =⇒ dual problem has the same optimal value

I Strong duality =⇒ certificate of optimality (very cheap to check)

When in Doubt, Take the Dual 18

Duality provides an alternate view of the problem

I The primal problem: finding the optimal trades

I The dual problem: finding the optimal prices

I Idea: your utility function induces personal “shadow” prices (marginal utilities) at
which you value each token

I Given these prices, you can arbitrage each CFMM independently & in parallel

I Strong duality =⇒ dual problem has the same optimal value

I Strong duality =⇒ certificate of optimality (very cheap to check)

When in Doubt, Take the Dual 18

Duality provides an alternate view of the problem

I The primal problem: finding the optimal trades

I The dual problem: finding the optimal prices

I Idea: your utility function induces personal “shadow” prices (marginal utilities) at
which you value each token

I Given these prices, you can arbitrage each CFMM independently & in parallel

I Strong duality =⇒ dual problem has the same optimal value

I Strong duality =⇒ certificate of optimality (very cheap to check)

When in Doubt, Take the Dual 18

The dual problem is much easier to solve

I The dual problem is

minimize g(ν) = (−U)∗(−ν) +
∑m

i=1 arbi (A
T
i ν)

When in Doubt, Take the Dual 19

The dual problem is much easier to solve

I The dual problem is

minimize g(ν) = (−U)∗(−ν) +
∑m

i=1 arbi (A
T
i ν)

I The conjugate function is typically easy to evaluate

When in Doubt, Take the Dual 19

The dual problem is much easier to solve

I The dual problem is

minimize g(ν) = (−U)∗(−ν) +
∑m

i=1 arbi (A
T
i ν)

I The conjugate function is typically easy to evaluate

I arbi (AT
i ν) is the optimal arb on CFMM i with global token prices ν

maximize (AT
i ν)T (Λi −∆i)

subject to ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri)
∆i ≥ 0, Λi ≥ 0

When in Doubt, Take the Dual 19

The dual problem is much easier to solve

I The dual problem is

minimize g(ν) = (−U)∗(−ν) +
∑m

i=1 arbi (A
T
i ν)

I The conjugate function is typically easy to evaluate

I arbi (AT
i ν) is the optimal arb on CFMM i with global token prices ν

I This is an unconstrained convex problem =⇒ fast to solve!

I To add a DEX, only need to define this arbitrage function

When in Doubt, Take the Dual 19

The dual problem is much easier to solve

I The dual problem is

minimize g(ν) = (−U)∗(−ν) +
∑m

i=1 arbi (A
T
i ν)

I The conjugate function is typically easy to evaluate

I arbi (AT
i ν) is the optimal arb on CFMM i with global token prices ν

I This is an unconstrained convex problem =⇒ fast to solve!

I To add a DEX, only need to define this arbitrage function

When in Doubt, Take the Dual 19

Outline

Background: Constant Function Market Makers

Formalizing Routing

When in Doubt, Take the Dual

Numerical Results

Wrap Up

Numerical Results 20

Our solver CFMMRouter is faster than commercial convex solvers

Numerical Results 21

We see way less price impact for large txns

Numerical Results 22

And it beats 1inch in production on Arbitrum (flood.bid)

Numerical Results 23

Routing package on Github: CFMMRouter.jl

Flood in beta on Arbitrum: flood.bid

Numerical Results 24

Outline

Background: Constant Function Market Makers

Formalizing Routing

When in Doubt, Take the Dual

Numerical Results

Wrap Up

Wrap Up 25

Summary

I Routing with no gas fees is a convex optimization problem

I This means it can be solved quickly to global optimality

I And we can prove a feasible point is optimal

I We construct an efficient algorithm using convex duality

I This algorithm is implemented in CFMMRouter.jl

Wrap Up 26

Summary

I Routing with no gas fees is a convex optimization problem

I This means it can be solved quickly to global optimality

I And we can prove a feasible point is optimal

I We construct an efficient algorithm using convex duality

I This algorithm is implemented in CFMMRouter.jl

Wrap Up 26

Summary

I Routing with no gas fees is a convex optimization problem

I This means it can be solved quickly to global optimality

I And we can prove a feasible point is optimal

I We construct an efficient algorithm using convex duality

I This algorithm is implemented in CFMMRouter.jl

Wrap Up 26

Summary

I Routing with no gas fees is a convex optimization problem

I This means it can be solved quickly to global optimality

I And we can prove a feasible point is optimal

I We construct an efficient algorithm using convex duality

I This algorithm is implemented in CFMMRouter.jl

Wrap Up 26

Summary

I Routing with no gas fees is a convex optimization problem

I This means it can be solved quickly to global optimality

I And we can prove a feasible point is optimal

I We construct an efficient algorithm using convex duality

I This algorithm is implemented in CFMMRouter.jl

Wrap Up 26

Future work includes expanding this framework

I Routing with gas fees (nonconvex—need good heuristics)

I Routing through liquidations

I Routing with probabilistic constraints when TXs may fail (e.g., cross-chain)

Wrap Up 27

For more info, check out our paper & CFMMRouter.jl

Paper

Thank you!

Theo Diamandis

tdiamand@mit.edu

Wrap Up 28

Appendix

29

Optimality conditions

For the primal problem

maximize U(Ψ)
subject to Ψ =

∑m
i=1 Ai (Λi −∆i)

ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri), i = 1, . . . ,m
∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m

The optimality conditions are

λiγi∇ϕi (Ri + γi∆
?
i − Λ?

i) ≤ AT
i ν

? ≤ λi∇ϕi (RI + γi∆
?
i − Λ?

i), i = 1, . . . ,m

Optimality conditions 30

Routing with gas fees

I Gas cost for CFMM i is qi

I New variable η ∈ {0, 1}m

I ηi = 1 if CFMM i is used in the trade

maximize U(Ψ)− qTη
subject to Ψ =

∑m
i=1 Ai (Λi −∆i)

ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri), i = 1, . . . ,m
ηi∆

max ≥ ∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m
η ∈ {0, 1}m

What about Gas? 31

Routing with gas fees

I Gas cost for CFMM i is qi

I New variable η ∈ {0, 1}m

I ηi = 1 if CFMM i is used in the trade

maximize U(Ψ)− qTη
subject to Ψ =

∑m
i=1 Ai (Λi −∆i)

ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri), i = 1, . . . ,m
ηi∆

max ≥ ∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m
η ∈ {0, 1}m

What about Gas? 31

Routing with gas fees

maximize U(Ψ)− qTη
subject to Ψ =

∑m
i=1 Ai (Λi −∆i)

ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri), i = 1, . . . ,m
ηi∆

max ≥ ∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m
η ∈ {0, 1}m

I Issue: this problem is nonconvex...

I ...but we have good heuristics for this type of problem

What about Gas? 32

Routing with gas fees

maximize U(Ψ)− qTη
subject to Ψ =

∑m
i=1 Ai (Λi −∆i)

ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri), i = 1, . . . ,m
ηi∆

max ≥ ∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m
η ∈ {0, 1}m

I Issue: this problem is nonconvex...

I ...but we have good heuristics for this type of problem

What about Gas? 32

One Heuristic: `1 penalty

I Use `1 norm to approximate cardinality of trade vectors ∆i

I `1 norm: ‖x‖1 =
∑

i |xi |

I Approximate gas cost:
∑m

i=1 qi‖∆i‖1/ni

maximize U(Ψ)−
∑m

i=1 qi‖∆i‖1/ni
subject to Ψ =

∑m
i=1 Ai (Λi −∆i)

ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri), i = 1, . . . ,m
∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m

What about Gas? 33

One Heuristic: `1 penalty

I Use `1 norm to approximate cardinality of trade vectors ∆i

I `1 norm: ‖x‖1 =
∑

i |xi |
I Approximate gas cost:

∑m
i=1 qi‖∆i‖1/ni

maximize U(Ψ)−
∑m

i=1 qi‖∆i‖1/ni
subject to Ψ =

∑m
i=1 Ai (Λi −∆i)

ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri), i = 1, . . . ,m
∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m

What about Gas? 33

One Heuristic: `1 penalty

I Use `1 norm to approximate cardinality of trade vectors ∆i

I `1 norm: ‖x‖1 =
∑

i |xi |
I Approximate gas cost:

∑m
i=1 qi‖∆i‖1/ni

maximize U(Ψ)−
∑m

i=1 qi‖∆i‖1/ni
subject to Ψ =

∑m
i=1 Ai (Λi −∆i)

ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri), i = 1, . . . ,m
∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m

What about Gas? 33

One Heuristic: `1 penalty

I Use `1 norm to approximate cardinality of trade vectors ∆i

I `1 norm: ‖x‖1 =
∑

i |xi |
I Approximate gas cost:

∑m
i=1 qi‖∆i‖1/ni

maximize U(Ψ)−
∑m

i=1 qi‖∆i‖1/ni
subject to Ψ =

∑m
i=1 Ai (Λi −∆i)

ϕi (Ri + γi∆i − Λi) ≥ ϕi (Ri), i = 1, . . . ,m
∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m

What about Gas? 33

How does Uniswap v3 fit in?

I Answer 1: if solving the dual, only need to define arb(·)

I This is relatively easy: simple algorithm & closed form solution within a tick

I Answer 2: The ϕ constraint is a bit of a lie...

I Only need a convex reachable reserve set (or, equivalently, trading set):

ϕ(R + γ∆− Λ) ≥ ϕ(R) ⇐⇒ R + γ∆− Λ ∈ S(R)

But Uniswap v3 doesn’t have a trading function 34

How does Uniswap v3 fit in?

I Answer 1: if solving the dual, only need to define arb(·)

I This is relatively easy: simple algorithm & closed form solution within a tick

I Answer 2: The ϕ constraint is a bit of a lie...

I Only need a convex reachable reserve set (or, equivalently, trading set):

ϕ(R + γ∆− Λ) ≥ ϕ(R) ⇐⇒ R + γ∆− Λ ∈ S(R)

But Uniswap v3 doesn’t have a trading function 34

How does Uniswap v3 fit in?

I Answer 1: if solving the dual, only need to define arb(·)

I This is relatively easy: simple algorithm & closed form solution within a tick

I Answer 2: The ϕ constraint is a bit of a lie...

I Only need a convex reachable reserve set (or, equivalently, trading set):

ϕ(R + γ∆− Λ) ≥ ϕ(R) ⇐⇒ R + γ∆− Λ ∈ S(R)

But Uniswap v3 doesn’t have a trading function 34

	Background: Constant Function Market Makers
	Formalizing Routing
	When in Doubt, Take the Dual
	Numerical Results
	Wrap Up
	Appendix
	Optimality conditions
	What about Gas?
	But Uniswap v3 doesn't have a trading function

