An Efficient Algorithm for Optimal Routing Through Constant Function Market Makers

Theo Diamandis (MIT), Max Resnick (Rook), Tarun Chitra (Gauntlet), and Guillermo Angeris (Bain Capital Crypto)

Financial Cryptography 2023

tl;dr: It's all convex optimization

Routing (multi-DEX swaps, etc.) is a convex¹ optimization problem, so it can be *very efficiently* solved to *verifiable* global optimality.

¹when we ignore gas

tl;dr: It's all convex optimization

Routing (multi-DEX swaps, etc.) is a convex¹ optimization problem, so it can be *very efficiently* solved to *verifiable* global optimality.

This talk: the 'very efficiently' part

¹when we ignore gas

Outline

Background: Constant Function Market Makers

Formalizing Routing

When in Doubt, Take the Dual

Numerical Results

Wrap Up

Background: Constant Function Market Makers

- Most DEXs are implemented as constant function market makers (CFMMs)
- ▶ CFMMs are defined by their trading function $\varphi : \mathbb{R}^n_+ \to \mathbb{R}$

- Most DEXs are implemented as constant function market makers (CFMMs)
- ▶ CFMMs are defined by their trading function $\varphi : \mathbb{R}^n_+ \to \mathbb{R}$
- Maps reserves $R \in \mathbb{R}^n_+$ to a real number

- Most DEXs are implemented as constant function market makers (CFMMs)
- ▶ CFMMs are defined by their trading function $\varphi : \mathbb{R}^n_+ \to \mathbb{R}$
- Maps reserves $R \in \mathbb{R}^n_+$ to a real number
- Is concave and increasing

- Most DEXs are implemented as constant function market makers (CFMMs)
- ▶ CFMMs are defined by their trading function $\varphi : \mathbb{R}^n_+ \to \mathbb{R}$
- Maps reserves $R \in \mathbb{R}^n_+$ to a real number
- Is concave and increasing
- Accepts trade $\Delta \to \Lambda$ if $\varphi(R + \gamma \Delta \Lambda) \ge \varphi(R)$.

Most DEXs are CFMMs

• Geometric mean trading function (Balancer, Uniswap, etc...):

$$\varphi(R) = \left(\prod_{i=1}^n R_i^{w_i}\right)^{1/n}$$

where w_i are nonnegative weights that sum to 1.

Most DEXs are CFMMs

Geometric mean trading function (Balancer, Uniswap, etc...):

$$\varphi(R) = \left(\prod_{i=1}^n R_i^{w_i}\right)^{1/n}$$

where w_i are nonnegative weights that sum to 1.

Curve:

$$\varphi(R) = \mathbf{1}^T R - \alpha \prod_{i=1}^n R_i^{-1}$$

where $\alpha > 0$.

▶ Most CFMMs are swap pools (trade asset A for B)

▶ Most CFMMs are swap pools (trade asset A for B)

For *n* assets, can have $\sim n^2$ swap pools

- Most CFMMs are swap pools (trade asset A for B)
- For *n* assets, can have $\sim n^2$ swap pools
- ► If I want to trade ETH for DAI, there are many routes I can take:
 - ETH \rightarrow DAI
 - ETH \rightarrow USDC \rightarrow DAI
 - ETH $\rightarrow \mathrm{wBTC} \rightarrow \mathrm{DAI}$

- ...

▶ Most CFMMs are swap pools (trade asset A for B)

- For *n* assets, can have $\sim n^2$ swap pools
- ► If I want to trade ETH for DAI, there are many routes I can take:
 - ETH \rightarrow DAI
 - $~\mathrm{ETH} \rightarrow \mathrm{USDC} \rightarrow \mathrm{DAI}$
 - $~\mathrm{ETH} \rightarrow \mathrm{wBTC} \rightarrow \mathrm{DAI}$

- ...

Problem: How to split trade?

Most CFMMs are swap pools (trade asset A for B)

- For *n* assets, can have $\sim n^2$ swap pools
- ▶ If I want to trade ETH for DAI, there are many routes I can take: – ETH \rightarrow DAI
 - ETH \rightarrow USDC \rightarrow DAI
 - $\text{ ETH} \rightarrow \text{wBTC} \rightarrow \text{DAI}$

- ...

Problem: How to split trade?

Solution: build a router

Outline

Background: Constant Function Market Makers

Formalizing Routing

When in Doubt, Take the Dual

Numerical Results

Wrap Up

Common representation: undirected graph with exchange rates

Common representation: undirected graph with exchange rates

But how to handle three pools? Multiple CFMMs?

▶ The token-CFMM network is a hypergraph: edges can connect more than 2 vertices

▶ The token-CFMM network is a hypergraph: edges can connect more than 2 vertices

Good bookkeeping is essential!

- Label the tokens $1, 2, \ldots, n$
- Label the CFMMs $1, 2, \ldots, m$

- Label the tokens $1, 2, \ldots, n$
- Label the CFMMs $1, 2, \ldots, m$
- **CFMM** *i* has n_i tokens, with *local* indices $1, \ldots, n_i$

- Label the tokens $1, 2, \ldots, n$
- Label the CFMMs $1, 2, \ldots, m$
- **CFMM** *i* has n_i tokens, with *local* indices $1, \ldots, n_i$
- ► Trade (Δ_i, Λ_i) with CFMM *i*, where $\Delta_i, \Lambda_i \in \mathbb{R}^{n_i}_+$

- Label the tokens $1, 2, \ldots, n$
- Label the CFMMs $1, 2, \ldots, m$
- **CFMM** *i* has n_i tokens, with *local* indices $1, \ldots, n_i$
- ► Trade (Δ_i, Λ_i) with CFMM *i*, where $\Delta_i, \Lambda_i \in \mathbb{R}^{n_i}_+$
- Trade accepted if $\varphi_i(R_i + \gamma_i \Delta_i \Lambda_i) \ge \varphi_i(R_i)$

▶ Matrices A_i map token's *local* index in CFMM *i* to global index, *e.g.*, ,

Token	Local Index	Global Index
DAI	1	3
ETH	2	1

▶ Matrices A_i map token's *local* index in CFMM *i* to global index, *e.g.*, ,

Token	Local Index	Global Index
DAI	1	3
ETH	2	1

The overall net trade with the network is

$$\Psi = \sum_{i=1}^m A_i (\Lambda_i - \Delta_i)$$

Simplifying the Model

- ► We ignore gas fees
- We don't worry about transaction execution ordering
- ▶ We can return to these later...

• We choose some utility function $U(\Psi)$ of the net trade Ψ

• We choose some utility function $U(\Psi)$ of the net trade Ψ

The optimal routing problem is then

$$\begin{array}{ll} \text{maximize} & U(\Psi) \\ \text{subject to} & \Psi = \sum_{i=1}^{m} A_i (\Lambda_i - \Delta_i) \\ & \varphi_i (R_i + \gamma_i \Delta_i - \Lambda_i) \geq \varphi_i (R_i), \quad i = 1, \dots, m \\ & \Delta_i \geq 0, \quad \Lambda_i \geq 0, \quad i = 1, \dots, m. \end{array}$$

• We choose some utility function $U(\Psi)$ of the net trade Ψ

The optimal routing problem is then

maximize
$$U(\Psi)$$

subject to $\Psi = \sum_{i=1}^{m} A_i(\Lambda_i - \Delta_i)$
 $\varphi_i(R_i + \gamma_i \Delta_i - \Lambda_i) \ge \varphi_i(R_i), \quad i = 1, ..., m$
 $\Delta_i \ge 0, \quad \Lambda_i \ge 0, \quad i = 1, ..., m.$

• We choose some utility function $U(\Psi)$ of the net trade Ψ

The optimal routing problem is then

maximize
$$U(\Psi)$$

subject to $\Psi = \sum_{i=1}^{m} A_i(\Lambda_i - \Delta_i)$
 $\varphi_i(R_i + \gamma_i \Delta_i - \Lambda_i) \ge \varphi_i(R_i), \quad i = 1, ..., m$
 $\Delta_i \ge 0, \quad \Lambda_i \ge 0, \quad i = 1, ..., m.$

Each individual CFMM is defined by trading constraints

$U(\Psi)$ encodes what we want to do

 \blacktriangleright Utility function U gives our satisfaction with the net trade

 \blacktriangleright We can also use U to encode constraints

$U(\Psi)$ encodes what we want to do

 \blacktriangleright Utility function U gives our satisfaction with the net trade

► We can also use *U* to encode constraints

> Arbitrage: Find the most profitable nonnegative net trade

$$U(\Psi) = c^T \Psi - \mathbb{I}(\Psi \ge 0)$$

- The vector c is a positive price vector
- Indicator function $\mathbb{I}(\Psi \geq 0) = 0$ if $\Psi \geq 0$ and $+\infty$ otherwise

Swaps: trade token *i* for *j*

- ► Goal: maximize output of token *j* given fixed input of token *i*
- Constraints: input exactly Δ^i of token *i* and only get token *j*

$$U(\Psi) = \Psi_j - \mathbb{I}(\Psi_{[n]\setminus\{i,j\}} = 0, \ \Psi_i = -\Delta^i)$$

Swaps: trade token *i* for *j*

- ► Goal: maximize output of token *j* given fixed input of token *i*
- Constraints: input exactly Δ^i of token *i* and only get token *j*

$$U(\Psi) = \Psi_j - \mathbb{I}(\Psi_{[n] \setminus \{i,j\}} = 0, \ \Psi_i = -\Delta^i)$$

- More generally, we can optimally purchase or liquidate a basket of tokens
- Capturing "arbitrage" opportunities as part of the swap

Outline

Background: Constant Function Market Makers

Formalizing Routing

When in Doubt, Take the Dual

Numerical Results

Wrap Up
► The primal problem: finding the optimal trades

- The primal problem: finding the optimal trades
- The dual problem: finding the optimal prices

- The primal problem: finding the optimal trades
- ► The dual problem: finding the optimal prices
- Idea: your utility function induces personal "shadow" prices (marginal utilities) at which you value each token

- The primal problem: finding the optimal trades
- The dual problem: finding the optimal prices
- Idea: your utility function induces personal "shadow" prices (marginal utilities) at which you value each token
- ► Given these prices, you can arbitrage each CFMM independently & in parallel

- The primal problem: finding the optimal trades
- The dual problem: finding the optimal prices
- Idea: your utility function induces personal "shadow" prices (marginal utilities) at which you value each token
- ► Given these prices, you can arbitrage each CFMM independently & in parallel
- \blacktriangleright Strong duality \implies dual problem has the same optimal value

- The primal problem: finding the optimal trades
- The dual problem: finding the optimal prices
- Idea: your utility function induces personal "shadow" prices (marginal utilities) at which you value each token
- ▶ Given these prices, you can arbitrage each CFMM independently & in parallel
- \blacktriangleright Strong duality \implies dual problem has the same optimal value
- Strong duality ⇒ certificate of optimality (very cheap to check)

When in Doubt, Take the Dual

► The dual problem is

minimize
$$g(\nu) = (-U)^*(-\nu) + \sum_{i=1}^m \operatorname{arb}_i(A_i^T \nu)$$

When in Doubt, Take the Dual

► The dual problem is

minimize
$$g(\nu) = (-U)^*(-\nu) + \sum_{i=1}^m \operatorname{arb}_i(A_i^T \nu)$$

The conjugate function is typically easy to evaluate

► The dual problem is

minimize
$$g(\nu) = (-U)^*(-\nu) + \sum_{i=1}^m \operatorname{arb}_i(A_i^T \nu)$$

The conjugate function is typically easy to evaluate

• $\operatorname{arb}_i(A_i^T \nu)$ is the optimal arb on CFMM *i* with global token prices ν

$$\begin{array}{ll} \text{maximize} & (A_i^{\mathsf{T}}\nu)^{\mathsf{T}}(\Lambda_i - \Delta_i) \\ \text{subject to} & \varphi_i(R_i + \gamma_i\Delta_i - \Lambda_i) \geq \varphi_i(R_i) \\ & \Delta_i \geq 0, \quad \Lambda_i \geq 0 \end{array}$$

When in Doubt, Take the Dual

► The dual problem is

minimize
$$g(\nu) = (-U)^*(-\nu) + \sum_{i=1}^m \operatorname{arb}_i(A_i^T \nu)$$

The conjugate function is typically easy to evaluate

- ▶ $\operatorname{arb}_i(A_i^T \nu)$ is the optimal arb on CFMM *i* with global token prices ν
- \blacktriangleright This is an unconstrained convex problem \implies fast to solve!

► The dual problem is

minimize
$$g(\nu) = (-U)^*(-\nu) + \sum_{i=1}^m \operatorname{arb}_i(A_i^T \nu)$$

- The conjugate function is typically easy to evaluate
- $\operatorname{arb}_i(A_i^T \nu)$ is the optimal arb on CFMM *i* with global token prices ν
- \blacktriangleright This is an unconstrained convex problem \implies fast to solve!
- > To add a DEX, only need to define this arbitrage function

When in Doubt, Take the Dual

Outline

Background: Constant Function Market Makers

Formalizing Routing

When in Doubt, Take the Dual

Numerical Results

Wrap Up

Our solver CFMMRouter is faster than commercial convex solvers

Routing Solve Time

We see way less price impact for large txns

And it beats 1inch in production on Arbitrum (flood.bid)

Routing package on Github: CFMMRouter.jl

Flood in beta on Arbitrum: flood.bid

Outline

Background: Constant Function Market Makers

Formalizing Routing

When in Doubt, Take the Dual

Numerical Results

Wrap Up

Routing with no gas fees is a convex optimization problem

- Routing with no gas fees is a convex optimization problem
- > This means it can be solved quickly to global optimality

- Routing with no gas fees is a convex optimization problem
- > This means it can be solved quickly to global optimality
- And we can prove a feasible point is optimal

- Routing with no gas fees is a convex optimization problem
- > This means it can be solved quickly to global optimality
- And we can prove a feasible point is optimal
- ▶ We construct an efficient algorithm using convex duality

- Routing with no gas fees is a convex optimization problem
- > This means it can be solved quickly to global optimality
- And we can prove a feasible point is optimal
- ▶ We construct an efficient algorithm using convex duality
- This algorithm is implemented in CFMMRouter.jl

Future work includes expanding this framework

- Routing with gas fees (nonconvex—need good heuristics)
- Routing through liquidations
- Routing with probabilistic constraints when TXs may fail (e.g., cross-chain)

For more info, check out our paper & CFMMRouter.jl

Thank you!

Theo Diamandis

tdiamand@mit.edu

Wrap Up

Appendix

Optimality conditions

For the primal problem

maximize
$$U(\Psi)$$

subject to $\Psi = \sum_{i=1}^{m} A_i (\Lambda_i - \Delta_i)$
 $\varphi_i (R_i + \gamma_i \Delta_i - \Lambda_i) \ge \varphi_i (R_i), \quad i = 1, ..., m$
 $\Delta_i \ge 0, \quad \Lambda_i \ge 0, \quad i = 1, ..., m$

The optimality conditions are

$$\lambda_i \gamma_i \nabla \varphi_i (R_i + \gamma_i \Delta_i^* - \Lambda_i^*) \leq A_i^{\mathsf{T}} \nu^* \leq \lambda_i \nabla \varphi_i (R_I + \gamma_i \Delta_i^* - \Lambda_i^*), \qquad i = 1, \dots, m$$

Optimality conditions

- Gas cost for CFMM i is q_i
- ▶ New variable $\eta \in \{0,1\}^m$
- $\eta_i = 1$ if CFMM *i* is used in the trade

- Gas cost for CFMM i is q_i
- ▶ New variable $\eta \in \{0,1\}^m$
- $\eta_i = 1$ if CFMM *i* is used in the trade

maximize
$$U(\Psi) - q^T \eta$$

subject to $\Psi = \sum_{i=1}^m A_i (\Lambda_i - \Delta_i)$
 $\varphi_i (R_i + \gamma_i \Delta_i - \Lambda_i) \ge \varphi_i (R_i), \quad i = 1, ..., m$
 $\eta_i \Delta^{\max} \ge \Delta_i \ge 0, \quad \Lambda_i \ge 0, \quad i = 1, ..., m$
 $\eta \in \{0, 1\}^m$

maximize
$$U(\Psi) - q^T \eta$$

subject to $\Psi = \sum_{i=1}^m A_i (\Lambda_i - \Delta_i)$
 $\varphi_i (R_i + \gamma_i \Delta_i - \Lambda_i) \ge \varphi_i (R_i), \quad i = 1, ..., m$
 $\eta_i \Delta^{\max} \ge \Delta_i \ge 0, \quad \Lambda_i \ge 0, \quad i = 1, ..., m$
 $\eta \in \{0, 1\}^m$

► Issue: this problem is nonconvex...

maximize
$$U(\Psi) - q^T \eta$$

subject to $\Psi = \sum_{i=1}^m A_i (\Lambda_i - \Delta_i)$
 $\varphi_i (R_i + \gamma_i \Delta_i - \Lambda_i) \ge \varphi_i (R_i), \quad i = 1, ..., m$
 $\eta_i \Delta^{\max} \ge \Delta_i \ge 0, \quad \Lambda_i \ge 0, \quad i = 1, ..., m$
 $\eta \in \{0, 1\}^m$

► Issue: this problem is nonconvex...

...but we have good heuristics for this type of problem

What about Gas?

Use ℓ₁ norm to approximate cardinality of trade vectors Δ_i
ℓ₁ norm: ||x||₁ = ∑_i|x_i|

- Use ℓ_1 norm to approximate cardinality of trade vectors Δ_i
- \blacktriangleright ℓ_1 norm: $||x||_1 = \sum_i |x_i|$
- Approximate gas cost: $\sum_{i=1}^{m} q_i \|\Delta_i\|_1 / n_i$

- Use ℓ_1 norm to approximate cardinality of trade vectors Δ_i
- ▶ l_1 norm: $||x||_1 = \sum_i |x_i|$
- Approximate gas cost: $\sum_{i=1}^{m} q_i \|\Delta_i\|_1 / n_i$

maximize
$$U(\Psi) - \sum_{i=1}^{m} q_i \|\Delta_i\|_1 / n_i$$

subject to $\Psi = \sum_{i=1}^{m} A_i (\Lambda_i - \Delta_i)$
 $\varphi_i (R_i + \gamma_i \Delta_i - \Lambda_i) \ge \varphi_i (R_i), \quad i = 1, \dots, m$
 $\Delta_i \ge 0, \quad \Lambda_i \ge 0, \quad i = 1, \dots, m$

What about Gas?

- Use ℓ_1 norm to approximate cardinality of trade vectors Δ_i
- ▶ l_1 norm: $||x||_1 = \sum_i |x_i|$
- Approximate gas cost: $\sum_{i=1}^{m} q_i \|\Delta_i\|_1 / n_i$

maximize
$$U(\Psi) - \sum_{i=1}^{m} q_i \|\Delta_i\|_1 / n_i$$

subject to $\Psi = \sum_{i=1}^{m} A_i (\Lambda_i - \Delta_i)$
 $\varphi_i (R_i + \gamma_i \Delta_i - \Lambda_i) \ge \varphi_i (R_i), \quad i = 1, \dots, m$
 $\Delta_i \ge 0, \quad \Lambda_i \ge 0, \quad i = 1, \dots, m$

What about Gas?

How does Uniswap v3 fit in?

- ► Answer 1: if solving the dual, only need to define arb(·)
- > This is relatively easy: simple algorithm & closed form solution within a tick

How does Uniswap v3 fit in?

- ► Answer 1: if solving the dual, only need to define arb(·)
- > This is relatively easy: simple algorithm & closed form solution within a tick
- Answer 2: The φ constraint is a bit of a lie...
How does Uniswap v3 fit in?

- ► Answer 1: if solving the dual, only need to define arb(·)
- ▶ This is relatively easy: simple algorithm & closed form solution within a tick
- Answer 2: The φ constraint is a bit of a lie...
- Only need a convex reachable reserve set (or, equivalently, trading set):

$$\varphi(R + \gamma \Delta - \Lambda) \ge \varphi(R) \iff R + \gamma \Delta - \Lambda \in S(R)$$

But Uniswap v3 doesn't have a trading function