An Efficient Algorithm for Optimal Routing Through Constant Function Market Makers

Theo Diamandis (MIT), Max Resnick (Rook), Tarun Chitra (Gauntlet), and Guillermo Angeris (Bain Capital Crypto)

Financial Cryptography 2023

tl;dr: It's all convex optimization

Routing (multi-DEX swaps, etc.) is a convex ${ }^{1}$ optimization problem, so it can be very efficiently solved to verifiable global optimality.

[^0]
tl;dr: It's all convex optimization

Routing (multi-DEX swaps, etc.) is a convex ${ }^{1}$ optimization problem, so it can be very efficiently solved to verifiable global optimality.

This talk: the 'very efficiently' part

[^1]
Outline

Background: Constant Function Market Makers

Formalizing Routing
When in Doubt, Take the Dual

Numerical Results
Wrap Up

Review: Constant Function Market Makers

- Most DEXs are implemented as constant function market makers (CFMMs)
- CFMMs are defined by their trading function $\varphi: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$

Review: Constant Function Market Makers

- Most DEXs are implemented as constant function market makers (CFMMs)
- CFMMs are defined by their trading function $\varphi: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$
- Maps reserves $R \in \mathbb{R}_{+}^{n}$ to a real number

Review: Constant Function Market Makers

- Most DEXs are implemented as constant function market makers (CFMMs)
- CFMMs are defined by their trading function $\varphi: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$
- Maps reserves $R \in \mathbb{R}_{+}^{n}$ to a real number
- Is concave and increasing

Review: Constant Function Market Makers

- Most DEXs are implemented as constant function market makers (CFMMs)
- CFMMs are defined by their trading function $\varphi: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$
- Maps reserves $R \in \mathbb{R}_{+}^{n}$ to a real number
- Is concave and increasing
- Accepts trade $\Delta \rightarrow \Lambda$ if $\varphi(R+\gamma \Delta-\Lambda) \geq \varphi(R)$.

Most DEXs are CFMMs

- Geometric mean trading function (Balancer, Uniswap, etc...):

$$
\varphi(R)=\left(\prod_{i=1}^{n} R_{i}^{w_{i}}\right)^{1 / n}
$$

where w_{i} are nonnegative weights that sum to 1 .

Most DEXs are CFMMs

- Geometric mean trading function (Balancer, Uniswap, etc...):

$$
\varphi(R)=\left(\prod_{i=1}^{n} R_{i}^{w_{i}}\right)^{1 / n}
$$

where w_{i} are nonnegative weights that sum to 1 .

- Curve:

$$
\varphi(R)=1^{T} R-\alpha \prod_{i=1}^{n} R_{i}^{-1}
$$

where $\alpha>0$.

Problem: fragmented liquidity

- Most CFMMs are swap pools (trade asset A for B)

Problem: fragmented liquidity

- Most CFMMs are swap pools (trade asset A for B)
- For n assets, can have $\sim n^{2}$ swap pools

Problem: fragmented liquidity

- Most CFMMs are swap pools (trade asset A for B)
- For n assets, can have $\sim n^{2}$ swap pools
- If I want to trade ETH for DAI, there are many routes I can take:
- ETH \rightarrow DAI
- ETH \rightarrow USDC \rightarrow DAI
- ETH \rightarrow wBTC \rightarrow DAI

Problem: fragmented liquidity

- Most CFMMs are swap pools (trade asset A for B)
- For n assets, can have $\sim n^{2}$ swap pools
- If I want to trade ETH for DAI, there are many routes I can take:
- ETH \rightarrow DAI
$-\mathrm{ETH} \rightarrow \mathrm{USDC} \rightarrow \mathrm{DAI}$
$-\mathrm{ETH} \rightarrow \mathrm{wBTC} \rightarrow \mathrm{DAI}$
- Problem: How to split trade?

Problem: fragmented liquidity

- Most CFMMs are swap pools (trade asset A for B)
- For n assets, can have $\sim n^{2}$ swap pools
- If I want to trade ETH for DAI, there are many routes I can take:
- ETH \rightarrow DAI
$-\mathrm{ETH} \rightarrow \mathrm{USDC} \rightarrow \mathrm{DAI}$
$-\mathrm{ETH} \rightarrow \mathrm{wBTC} \rightarrow \mathrm{DAI}$
- Problem: How to split trade?

Solution: build a router

Outline

Background: Constant Function Market Makers

Formalizing Routing

When in Doubt, Take the Dual

Numerical Results

Wrap Up

Formalizing Routing

Networks of CFMMs

- Common representation: undirected graph with exchange rates

Networks of CFMMs

- Common representation: undirected graph with exchange rates

- But how to handle three pools? Multiple CFMMs?

Networks of CFMMs

- The token-CFMM network is a hypergraph: edges can connect more than 2 vertices

Networks of CFMMs

- The token-CFMM network is a hypergraph: edges can connect more than 2 vertices

- Good bookkeeping is essential!

Networks of CFMMs

- Label the tokens $1,2, \ldots, n$
- Label the CFMMs $1,2, \ldots, m$

Networks of CFMMs

- Label the tokens $1,2, \ldots, n$
- Label the CFMMs $1,2, \ldots, m$
- CFMM i has n_{i} tokens, with local indices $1, \ldots, n_{i}$

Networks of CFMMs

- Label the tokens $1,2, \ldots, n$
- Label the CFMMs $1,2, \ldots, m$
- CFMM i has n_{i} tokens, with local indices $1, \ldots, n_{i}$
$-\operatorname{Trade}\left(\Delta_{i}, \Lambda_{i}\right)$ with CFMM i, where $\Delta_{i}, \Lambda_{i} \in \mathbb{R}_{+}^{n_{i}}$

Networks of CFMMs

- Label the tokens $1,2, \ldots, n$
- Label the CFMMs $1,2, \ldots, m$
- CFMM i has n_{i} tokens, with local indices $1, \ldots, n_{i}$
- Trade $\left(\Delta_{i}, \Lambda_{i}\right)$ with CFMM i, where $\Delta_{i}, \Lambda_{i} \in \mathbb{R}_{+}^{n_{i}}$
- Trade accepted if $\varphi_{i}\left(R_{i}+\gamma_{i} \Delta_{i}-\Lambda_{i}\right) \geq \varphi_{i}\left(R_{i}\right)$

Networks of CFMMs

- Matrices A_{i} map token's local index in CFMM i to global index, e.g., ,

Token	Local Index	Global Index
DAI	1	3
ETH	2	1

$$
A_{i} \cdot\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
0 \\
1 \\
0 \\
\vdots
\end{array}\right]
$$

Networks of CFMMs

- Matrices A_{i} map token's local index in CFMM i to global index, e.g., ,

Token	Local Index	Global Index
DAI	1	3
ETH	2	1

$$
A_{i} \cdot\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
0 \\
1 \\
0 \\
\vdots
\end{array}\right]
$$

- The overall net trade with the network is

$$
\Psi=\sum_{i=1}^{m} A_{i}\left(\Lambda_{i}-\Delta_{i}\right)
$$

Simplifying the Model

- We ignore gas fees
- We don't worry about transaction execution ordering
- We can return to these later...

The Routing Problem

- We choose some utility function $U(\Psi)$ of the net trade Ψ

The Routing Problem

- We choose some utility function $U(\Psi)$ of the net trade Ψ
- The optimal routing problem is then

$$
\begin{array}{ll}
\operatorname{maximize} & U(\Psi) \\
\text { subject to } & \Psi=\sum_{i=1}^{m} A_{i}\left(\Lambda_{i}-\Delta_{i}\right) \\
& \varphi_{i}\left(R_{i}+\gamma_{i} \Delta_{i}-\Lambda_{i}\right) \geq \varphi_{i}\left(R_{i}\right), \quad i=1, \ldots, m \\
& \Delta_{i} \geq 0, \quad \Lambda_{i} \geq 0, \quad i=1, \ldots, m .
\end{array}
$$

The Routing Problem

- We choose some utility function $U(\Psi)$ of the net trade Ψ
- The optimal routing problem is then

$$
\begin{array}{ll}
\operatorname{maximize} & U(\Psi) \\
\text { subject to } & \Psi=\sum_{i=1}^{m} A_{i}\left(\Lambda_{i}-\Delta_{i}\right) \\
& \varphi_{i}\left(R_{i}+\gamma_{i} \Delta_{i}-\Lambda_{i}\right) \geq \varphi_{i}\left(R_{i}\right), \quad i=1, \ldots, m \\
& \Delta_{i} \geq 0, \quad \Lambda_{i} \geq 0, \quad i=1, \ldots, m .
\end{array}
$$

The Routing Problem

- We choose some utility function $U(\Psi)$ of the net trade Ψ
- The optimal routing problem is then

$$
\begin{array}{ll}
\operatorname{maximize} & U(\Psi) \\
\text { subject to } & \Psi=\sum_{i=1}^{m} A_{i}\left(\Lambda_{i}-\Delta_{i}\right) \\
& \varphi_{i}\left(R_{i}+\gamma_{i} \Delta_{i}-\Lambda_{i}\right) \geq \varphi_{i}\left(R_{i}\right), \quad i=1, \ldots, m \\
& \Delta_{i} \geq 0, \quad \Lambda_{i} \geq 0, \quad i=1, \ldots, m .
\end{array}
$$

- Each individual CFMM is defined by trading constraints

$U(\Psi)$ encodes what we want to do

- Utility function U gives our satisfaction with the net trade
- We can also use U to encode constraints

$U(\Psi)$ encodes what we want to do

- Utility function U gives our satisfaction with the net trade
- We can also use U to encode constraints
- Arbitrage: Find the most profitable nonnegative net trade

$$
U(\Psi)=c^{T} \Psi-\mathbb{I}(\Psi \geq 0)
$$

- The vector c is a positive price vector
- Indicator function $\mathbb{I}(\Psi \geq 0)=0$ if $\Psi \geq 0$ and $+\infty$ otherwise

Swaps: trade token i for j

- Goal: maximize output of token j given fixed input of token i
- Constraints: input exactly Δ^{i} of token i and only get token j

$$
U(\Psi)=\Psi_{j}-\mathbb{I}\left(\Psi_{[n\rfloor \backslash\{i, j\}}=0, \Psi_{i}=-\Delta^{i}\right)
$$

Swaps: trade token i for j

- Goal: maximize output of token j given fixed input of token i
- Constraints: input exactly Δ^{i} of token i and only get token j

$$
U(\Psi)=\Psi_{j}-\mathbb{I}\left(\Psi_{[n] \backslash\{i, j\}}=0, \Psi_{i}=-\Delta^{i}\right)
$$

- More generally, we can optimally purchase or liquidate a basket of tokens
- Capturing "arbitrage" opportunities as part of the swap

Outline

Background: Constant Function Market Makers
Formalizing Routing

When in Doubt, Take the Dual

Numerical Results

Wrap Up

Duality provides an alternate view of the problem

- The primal problem: finding the optimal trades

Duality provides an alternate view of the problem

- The primal problem: finding the optimal trades
- The dual problem: finding the optimal prices

Duality provides an alternate view of the problem

- The primal problem: finding the optimal trades
- The dual problem: finding the optimal prices
- Idea: your utility function induces personal "shadow" prices (marginal utilities) at which you value each token

Duality provides an alternate view of the problem

- The primal problem: finding the optimal trades
- The dual problem: finding the optimal prices
- Idea: your utility function induces personal "shadow" prices (marginal utilities) at which you value each token
- Given these prices, you can arbitrage each CFMM independently \& in parallel

Duality provides an alternate view of the problem

- The primal problem: finding the optimal trades
- The dual problem: finding the optimal prices
- Idea: your utility function induces personal "shadow" prices (marginal utilities) at which you value each token
- Given these prices, you can arbitrage each CFMM independently \& in parallel
- Strong duality \Longrightarrow dual problem has the same optimal value

Duality provides an alternate view of the problem

- The primal problem: finding the optimal trades
- The dual problem: finding the optimal prices
- Idea: your utility function induces personal "shadow" prices (marginal utilities) at which you value each token
- Given these prices, you can arbitrage each CFMM independently \& in parallel
- Strong duality \Longrightarrow dual problem has the same optimal value
- Strong duality \Longrightarrow certificate of optimality (very cheap to check)

The dual problem is much easier to solve

- The dual problem is

$$
\text { minimize } g(\nu)=(-U)^{*}(-\nu)+\sum_{i=1}^{m} \operatorname{arb}_{i}\left(A_{i}^{T} \nu\right)
$$

The dual problem is much easier to solve

- The dual problem is

$$
\text { minimize } g(\nu)=(-U)^{*}(-\nu)+\sum_{i=1}^{m} \operatorname{arb}_{i}\left(A_{i}^{T} \nu\right)
$$

- The conjugate function is typically easy to evaluate

The dual problem is much easier to solve

- The dual problem is

$$
\operatorname{minimize} g(\nu)=(-U)^{*}(-\nu)+\sum_{i=1}^{m} \operatorname{arb}_{i}\left(A_{i}^{T} \nu\right)
$$

- The conjugate function is typically easy to evaluate
- $\operatorname{arb}_{i}\left(A_{i}^{T} \nu\right)$ is the optimal arb on CFMM i with global token prices ν

$$
\begin{array}{ll}
\operatorname{maximize} & \left(A_{i}^{T} \nu\right)^{T}\left(\Lambda_{i}-\Delta_{i}\right) \\
\text { subject to } & \varphi_{i}\left(R_{i}+\gamma_{i} \Delta_{i}-\Lambda_{i}\right) \geq \varphi_{i}\left(R_{i}\right) \\
& \Delta_{i} \geq 0, \quad \Lambda_{i} \geq 0
\end{array}
$$

The dual problem is much easier to solve

- The dual problem is

$$
\operatorname{minimize} g(\nu)=(-U)^{*}(-\nu)+\sum_{i=1}^{m} \operatorname{arb}_{i}\left(A_{i}^{T} \nu\right)
$$

- The conjugate function is typically easy to evaluate
- $\operatorname{arb}_{i}\left(A_{i}^{T} \nu\right)$ is the optimal arb on CFMM i with global token prices ν
- This is an unconstrained convex problem \Longrightarrow fast to solve!

The dual problem is much easier to solve

- The dual problem is

$$
\operatorname{minimize} g(\nu)=(-U)^{*}(-\nu)+\sum_{i=1}^{m} \operatorname{arb}_{i}\left(A_{i}^{T} \nu\right)
$$

- The conjugate function is typically easy to evaluate
- $\operatorname{arb}_{i}\left(A_{i}^{T} \nu\right)$ is the optimal arb on CFMM i with global token prices ν
- This is an unconstrained convex problem \Longrightarrow fast to solve!
- To add a DEX, only need to define this arbitrage function

Outline

Background: Constant Function Market MakersFormalizing Routing
When in Doubt, Take the Dual

Numerical Results

Wrap Up

Our solver CFMMRouter is faster than commercial convex solvers

Routing Solve Time

We see way less price impact for large txns

Routing Surplus

And it beats 1inch in production on Arbitrum (flood.bid)
Flood (opt routing) vs linch

Routing package on Github: CFMMRouter.jl

Flood in beta on Arbitrum: flood.bid

Outline

Background: Constant Function Market Makers
Formalizing Routing
When in Doubt, Take the Dual
Numerical Results
Wrap Up
Wrap Up25

Summary

- Routing with no gas fees is a convex optimization problem

Summary

- Routing with no gas fees is a convex optimization problem
- This means it can be solved quickly to global optimality

Summary

- Routing with no gas fees is a convex optimization problem
- This means it can be solved quickly to global optimality
- And we can prove a feasible point is optimal

Summary

- Routing with no gas fees is a convex optimization problem
- This means it can be solved quickly to global optimality
- And we can prove a feasible point is optimal
- We construct an efficient algorithm using convex duality

Summary

- Routing with no gas fees is a convex optimization problem
- This means it can be solved quickly to global optimality
- And we can prove a feasible point is optimal
- We construct an efficient algorithm using convex duality
- This algorithm is implemented in CFMMRouter. jl

Future work includes expanding this framework

- Routing with gas fees (nonconvex—need good heuristics)
- Routing through liquidations
- Routing with probabilistic constraints when TXs may fail (e.g., cross-chain)

For more info, check out our paper \& CFMMRouter.jl

Thank you!

Theo Diamandis
tdiamand@mit.edu

Appendix

Optimality conditions

For the primal problem

$$
\begin{array}{ll}
\operatorname{maximize} & U(\Psi) \\
\text { subject to } & \Psi=\sum_{i=1}^{m} A_{i}\left(\Lambda_{i}-\Delta_{i}\right) \\
& \varphi_{i}\left(R_{i}+\gamma_{i} \Delta_{i}-\Lambda_{i}\right) \geq \varphi_{i}\left(R_{i}\right), \quad i=1, \ldots, m \\
& \Delta_{i} \geq 0, \quad \Lambda_{i} \geq 0, \quad i=1, \ldots, m
\end{array}
$$

The optimality conditions are

$$
\lambda_{i} \gamma_{i} \nabla \varphi_{i}\left(R_{i}+\gamma_{i} \Delta_{i}^{\star}-\Lambda_{i}^{\star}\right) \leq A_{i}^{T} \nu^{\star} \leq \lambda_{i} \nabla \varphi_{i}\left(R_{I}+\gamma_{i} \Delta_{i}^{\star}-\Lambda_{i}^{\star}\right), \quad i=1, \ldots, m
$$

Routing with gas fees

- Gas cost for CFMM i is q_{i}
- New variable $\eta \in\{0,1\}^{m}$
- $\eta_{i}=1$ if CFMM i is used in the trade

Routing with gas fees

- Gas cost for CFMM i is q_{i}
- New variable $\eta \in\{0,1\}^{m}$
- $\eta_{i}=1$ if CFMM i is used in the trade

$$
\begin{array}{ll}
\operatorname{maximize} & U(\Psi)-q^{T} \eta \\
\text { subject to } & \Psi=\sum_{i=1}^{m} A_{i}\left(\Lambda_{i}-\Delta_{i}\right) \\
& \varphi_{i}\left(R_{i}+\gamma_{i} \Delta_{i}-\Lambda_{i}\right) \geq \varphi_{i}\left(R_{i}\right), \quad i=1, \ldots, m \\
& \eta_{i} \Delta^{\max } \geq \Delta_{i} \geq 0, \quad \Lambda_{i} \geq 0, \quad i=1, \ldots, m \\
& \eta \in\{0,1\}^{m}
\end{array}
$$

Routing with gas fees

$$
\begin{array}{ll}
\operatorname{maximize} & U(\Psi)-q^{T} \eta \\
\text { subject to } & \Psi=\sum_{i=1}^{m} A_{i}\left(\Lambda_{i}-\Delta_{i}\right) \\
& \varphi_{i}\left(R_{i}+\gamma_{i} \Delta_{i}-\Lambda_{i}\right) \geq \varphi_{i}\left(R_{i}\right), \quad i=1, \ldots, m \\
& \eta_{i} \Delta^{\max } \geq \Delta_{i} \geq 0, \quad \Lambda_{i} \geq 0, \quad i=1, \ldots, m \\
& \eta \in\{0,1\}^{m}
\end{array}
$$

- Issue: this problem is nonconvex...

Routing with gas fees

$$
\begin{array}{cl}
\operatorname{maximize} & U(\Psi)-q^{T} \eta \\
\text { subject to } & \Psi=\sum_{i=1}^{m} A_{i}\left(\Lambda_{i}-\Delta_{i}\right) \\
& \varphi_{i}\left(R_{i}+\gamma_{i} \Delta_{i}-\Lambda_{i}\right) \geq \varphi_{i}\left(R_{i}\right), \quad i=1, \ldots, m \\
& \eta_{i} \Delta^{\max } \geq \Delta_{i} \geq 0, \quad \Lambda_{i} \geq 0, \quad i=1, \ldots, m \\
& \eta \in\{0,1\}^{m}
\end{array}
$$

- Issue: this problem is nonconvex...
- ...but we have good heuristics for this type of problem

One Heuristic: ℓ_{1} penalty

- Use ℓ_{1} norm to approximate cardinality of trade vectors Δ_{i}
- ℓ_{1} norm: $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$

One Heuristic: ℓ_{1} penalty

- Use ℓ_{1} norm to approximate cardinality of trade vectors Δ_{i}
- ℓ_{1} norm: $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$
- Approximate gas cost: $\sum_{i=1}^{m} q_{i}\left\|\Delta_{i}\right\|_{1} / n_{i}$

One Heuristic: ℓ_{1} penalty

- Use ℓ_{1} norm to approximate cardinality of trade vectors Δ_{i}
- ℓ_{1} norm: $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$
- Approximate gas cost: $\sum_{i=1}^{m} q_{i}\left\|\Delta_{i}\right\|_{1} / n_{i}$

$$
\begin{array}{cl}
\operatorname{maximize} & U(\Psi)-\sum_{i=1}^{m} q_{i}\left\|\Delta_{i}\right\|_{1} / n_{i} \\
\text { subject to } & \Psi=\sum_{i=1}^{m} A_{i}\left(\Lambda_{i}-\Delta_{i}\right) \\
& \varphi_{i}\left(R_{i}+\gamma_{i} \Delta_{i}-\Lambda_{i}\right) \geq \varphi_{i}\left(R_{i}\right), \quad i=1, \ldots, m \\
& \Delta_{i} \geq 0, \quad \Lambda_{i} \geq 0, \quad i=1, \ldots, m
\end{array}
$$

One Heuristic: ℓ_{1} penalty

- Use ℓ_{1} norm to approximate cardinality of trade vectors Δ_{i}
- ℓ_{1} norm: $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$
- Approximate gas cost: $\sum_{i=1}^{m} q_{i}\left\|\Delta_{i}\right\|_{1} / n_{i}$

$$
\begin{array}{cl}
\operatorname{maximize} & U(\Psi)-\sum_{i=1}^{m} q_{i}\left\|\Delta_{i}\right\|_{1} / n_{i} \\
\text { subject to } & \Psi=\sum_{i=1}^{m} A_{i}\left(\Lambda_{i}-\Delta_{i}\right) \\
& \varphi_{i}\left(R_{i}+\gamma_{i} \Delta_{i}-\Lambda_{i}\right) \geq \varphi_{i}\left(R_{i}\right), \quad i=1, \ldots, m \\
& \Delta_{i} \geq 0, \quad \Lambda_{i} \geq 0, \quad i=1, \ldots, m
\end{array}
$$

How does Uniswap v3 fit in?

- Answer 1: if solving the dual, only need to define $\operatorname{arb}(\cdot)$
- This is relatively easy: simple algorithm \& closed form solution within a tick

How does Uniswap v3 fit in?

- Answer 1: if solving the dual, only need to define $\operatorname{arb}(\cdot)$
- This is relatively easy: simple algorithm \& closed form solution within a tick
- Answer 2: The φ constraint is a bit of a lie...

How does Uniswap v3 fit in?

- Answer 1: if solving the dual, only need to define $\operatorname{arb}(\cdot)$
- This is relatively easy: simple algorithm \& closed form solution within a tick
- Answer 2: The φ constraint is a bit of a lie...
- Only need a convex reachable reserve set (or, equivalently, trading set):

$$
\varphi(R+\gamma \Delta-\Lambda) \geq \varphi(R) \Longleftrightarrow R+\gamma \Delta-\Lambda \in S(R)
$$

[^0]: ${ }^{1}$ when we ignore gas

[^1]: ${ }^{1}$ when we ignore gas

