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tl;dr: It’s all convex optimization

Routing (multi-DEX swaps, etc.) is a convex1 optimization problem,
so it can be very efficiently solved to verifiable global optimality.

This talk: the ‘very efficiently’ part

1when we ignore gas
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Review: Constant Function Market Makers

I Most DEXs are implemented as constant function market makers (CFMMs)

I CFMMs are defined by their trading function ϕ : Rn
+ → R

I Maps reserves R ∈ Rn
+ to a real number

I Is concave and increasing

I Accepts trade ∆→ Λ if ϕ(R + γ∆− Λ) ≥ ϕ(R).
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Most DEXs are CFMMs

I Geometric mean trading function (Balancer, Uniswap, etc...):

ϕ(R) =

(
n∏

i=1

Rwi
i

)1/n

where wi are nonnegative weights that sum to 1.

I Curve:

ϕ(R) = 1TR − α
n∏

i=1

R−1
i

where α > 0.
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Problem: fragmented liquidity

I Most CFMMs are swap pools (trade asset A for B)

I For n assets, can have ∼n2 swap pools

I If I want to trade ETH for DAI, there are many routes I can take:
– ETH→ DAI

– ETH→ USDC→ DAI

– ETH→ wBTC→ DAI

– ...

I Problem: How to split trade? Solution: build a router
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Networks of CFMMs

I Common representation: undirected graph with exchange rates

rDAI-USDC rETH-USDT

rDAI-ETH

rUSDC-USDT

DAI
ETH

USDC
USDT

I But how to handle three pools? Multiple CFMMs?
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Networks of CFMMs

I The token-CFMM network is a hypergraph: edges can connect more than 2 vertices

CRV 3pool

UNI UNI

BAL40/60

DAI

ETH

USDC
USDT
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Networks of CFMMs

I The token-CFMM network is a hypergraph: edges can connect more than 2 vertices

CRV 3pool

BAL ETH60/DAI40

BAL USDC/ETH

UNI DAI/USDC

UNI ETH/USDT

DAI

ETH

USDC

USDT

I Good bookkeeping is essential!
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Networks of CFMMs

I Label the tokens 1, 2, . . . , n

I Label the CFMMs 1, 2, . . . ,m

I CFMM i has ni tokens, with local indices 1, . . . , ni

I Trade (∆i ,Λi ) with CFMM i , where ∆i ,Λi ∈ Rni
+

I Trade accepted if ϕi (Ri + γi∆i − Λi ) ≥ ϕi (Ri )
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Networks of CFMMs

I Matrices Ai map token’s local index in CFMM i to global index, e.g., ,

Token Local Index Global Index
DAI 1 3
ETH 2 1

Ai ·
[
1
2

]
=


2
0
1
0
...



I The overall net trade with the network is

Ψ =
m∑
i=1

Ai (Λi −∆i )
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Simplifying the Model

I We ignore gas fees

I We don’t worry about transaction execution ordering

I We can return to these later...
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The Routing Problem

I We choose some utility function U(Ψ) of the net trade Ψ

I The optimal routing problem is then

maximize U(Ψ)
subject to Ψ =

∑m
i=1 Ai (Λi −∆i )

ϕi (Ri + γi∆i − Λi ) ≥ ϕi (Ri ), i = 1, . . . ,m
∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m.
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ϕi (Ri + γi∆i − Λi ) ≥ ϕi (Ri ), i = 1, . . . ,m
∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m.

I Each individual CFMM is defined by trading constraints
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U(Ψ) encodes what we want to do

I Utility function U gives our satisfaction with the net trade

I We can also use U to encode constraints

I Arbitrage: Find the most profitable nonnegative net trade

U(Ψ) = cTΨ− I(Ψ ≥ 0)

– The vector c is a positive price vector

– Indicator function I(Ψ ≥ 0) = 0 if Ψ ≥ 0 and +∞ otherwise
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Swaps: trade token i for j

I Goal: maximize output of token j given fixed input of token i

I Constraints: input exactly ∆i of token i and only get token j

U(Ψ) = Ψj − I(Ψ[n]\{i ,j} = 0, Ψi = −∆i )

I More generally, we can optimally purchase or liquidate a basket of tokens

I Capturing “arbitrage” opportunities as part of the swap
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Duality provides an alternate view of the problem

I The primal problem: finding the optimal trades

I The dual problem: finding the optimal prices

I Idea: your utility function induces personal “shadow” prices (marginal utilities) at
which you value each token

I Given these prices, you can arbitrage each CFMM independently & in parallel

I Strong duality =⇒ dual problem has the same optimal value

I Strong duality =⇒ certificate of optimality (very cheap to check)
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The dual problem is much easier to solve

I The dual problem is

minimize g(ν) = (−U)∗(−ν) +
∑m

i=1 arbi (A
T
i ν)

When in Doubt, Take the Dual 19
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I arbi (AT
i ν) is the optimal arb on CFMM i with global token prices ν
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Our solver CFMMRouter is faster than commercial convex solvers
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We see way less price impact for large txns
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And it beats 1inch in production on Arbitrum (flood.bid)
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Routing package on Github: CFMMRouter.jl

Flood in beta on Arbitrum: flood.bid
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Summary

I Routing with no gas fees is a convex optimization problem

I This means it can be solved quickly to global optimality

I And we can prove a feasible point is optimal

I We construct an efficient algorithm using convex duality

I This algorithm is implemented in CFMMRouter.jl
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Future work includes expanding this framework

I Routing with gas fees (nonconvex—need good heuristics)

I Routing through liquidations

I Routing with probabilistic constraints when TXs may fail (e.g., cross-chain)

Wrap Up 27



For more info, check out our paper & CFMMRouter.jl

Paper

Thank you!

Theo Diamandis

tdiamand@mit.edu

Wrap Up 28
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Optimality conditions

For the primal problem

maximize U(Ψ)
subject to Ψ =

∑m
i=1 Ai (Λi −∆i )

ϕi (Ri + γi∆i − Λi ) ≥ ϕi (Ri ), i = 1, . . . ,m
∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m

The optimality conditions are

λiγi∇ϕi (Ri + γi∆
?
i − Λ?

i ) ≤ AT
i ν

? ≤ λi∇ϕi (RI + γi∆
?
i − Λ?

i ), i = 1, . . . ,m

Optimality conditions 30



Routing with gas fees

I Gas cost for CFMM i is qi

I New variable η ∈ {0, 1}m

I ηi = 1 if CFMM i is used in the trade

maximize U(Ψ)− qTη
subject to Ψ =

∑m
i=1 Ai (Λi −∆i )

ϕi (Ri + γi∆i − Λi ) ≥ ϕi (Ri ), i = 1, . . . ,m
ηi∆

max ≥ ∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m
η ∈ {0, 1}m

What about Gas? 31
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One Heuristic: `1 penalty

I Use `1 norm to approximate cardinality of trade vectors ∆i

I `1 norm: ‖x‖1 =
∑

i |xi |

I Approximate gas cost:
∑m

i=1 qi‖∆i‖1/ni

maximize U(Ψ)−
∑m

i=1 qi‖∆i‖1/ni
subject to Ψ =

∑m
i=1 Ai (Λi −∆i )

ϕi (Ri + γi∆i − Λi ) ≥ ϕi (Ri ), i = 1, . . . ,m
∆i ≥ 0, Λi ≥ 0, i = 1, . . . ,m
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How does Uniswap v3 fit in?

I Answer 1: if solving the dual, only need to define arb(·)

I This is relatively easy: simple algorithm & closed form solution within a tick

I Answer 2: The ϕ constraint is a bit of a lie...

I Only need a convex reachable reserve set (or, equivalently, trading set):

ϕ(R + γ∆− Λ) ≥ ϕ(R) ⇐⇒ R + γ∆− Λ ∈ S(R)

But Uniswap v3 doesn’t have a trading function 34
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